JORDAN ALGEBRAS

徐 泰 日 (T. Suh)

1．It is the purpose of the present paper to give a brief survey and present status of Jordan algebras with their connected fields．A non－asso－ ciative（not necessarily associative）a！gebra a over a field Φ is a vector space over Φ in which a bilinear composition is defined．That is，for any pair（ x, y ）of elements x and y of a vector space a there is associated with a product xy in a satisfying the following bilinearity condit－ ions
（1）$x(y+z)=x y+x z,(y+z) x=y x+z x$
（2）$\alpha(x y)=(\alpha x) y=x(\alpha y), \alpha$ in Φ ．
The algebra a is said to be associative if for all x, y, z of a we have the associative law
（3）$x(y z)=(x y) z$ ．
A non－associative algebra a is called an alte－ rnative algebra if its multiplication satisfies the alternative law
（4）$x^{2} y=x(x y), y x^{2}=(y x) x$ ．
A ron－associative algebra a is called a Lie algebra if its multiplication satisfies the Lie conditions
（5）$x^{2}=0, \quad(x y) z+(y z) x+(z x) y=0$ ．
The second of these is called the Jacobi tend－ ity．The general theory of Lie algebras has been developed extensively and applications of the theory are to be found in many other branches of mathematics．A full account of the theory may be found in the book［13］written by Jacobson．We define a jorday algebra to be a non－associative algebra a whose multiplication satisfics the Jordan conditions
（6）$x y=y x, x^{2}(y x)=\left(x^{2} y\right) x$
If an algebra satisfies one of the identities（4）， （5），（6），so does any subalgebra or homomorphic
image of it．If $\left\{\mathbf{a}_{\alpha}\right\}$ is a family of algebras satisfying one of the above，then so does the algebra $\Sigma_{a} \oplus \mathbf{a} \alpha$ ，the complete direct sum．In general，a class of algebras defined by a set of identities will be closed under the operation of taking subalgebra，homomorphic images and complete direct sums．Conversely，a special case of a result of G．Birkhoff［3］implies that any class of non－associative algebras that is closed under the operations of taking subalgebras， homomorphic images and complete direct sums can be defined by a set of identies．

2．It might be sad that alternative algebras begin and end with the Cayley numbers since they were defined in order to study the Cayley numbers，which in turn are the only distinguished members of that class．We give the construction of a（generalized）Cayley algebra．Let Q be a （generalized）quaternion algebra and C the cight－dimensional vector space of elements of the form：a＋bl，a．beQ，l a symbol．Addition and scalar multiplication of these clements are defined in the usual way．Multiplication is defined by

$$
(\mathrm{a}+\mathrm{b} l)(\mathrm{c}+\mathrm{d} l)=(\mathrm{ac}+\mu \overline{\mathrm{d}} \mathrm{~b})+(\mathrm{d} \mathrm{a}+\mathrm{b} \overline{\mathrm{c}}) l
$$

where μ is a non－zero element of the base field and \bar{a} is the usual conjugate of the quaternion a．Then we have an alternative algebra which is not associative．Under suitable conditions on Q and $\mu \mathrm{C}$ is a division algebra，an algebra whose non－zero elements have inverses．

It is proved by R．H．Bruck and E．Kleinfeld ［4］that the only alternative division algebras which are not associative are the Cayley algebras． This is also proved by L．A．Skornyakov［19］ independently．Instead of going into detail we list
a few references for the convenience of the reader. For an introduction to some of the geometrical aspects of alternative division algebras, there is a paper by Bruck [5]. Some of the number theoretic aspects are treated by Coxeter [7] and Kaplansky [14]. General results about the structure of simple alternative algebras are due to Albert [2] and Kleinfeld [15]. The automorphisms of alternative algebras has been touched first by Zorn [22]. If the base field of the algebra is the field of complex numbers then the group of automorphisms is the Lie group G_{2} in the Killing-Cartan clssification. Analogues of these groups for arbitrary fields have been defined by Chevalley [6]. In this connection the reader is referred to the paper [10] by Jacobson.
3. We consider an associative algebra a over a field Φ of characteristic not two. By using the associative multiplication of elements of a written $x \cdot y$, let us define new compositions
(7) $[\mathrm{x}, \mathrm{y}]=\mathrm{x} \cdot \mathrm{y}-\mathrm{y} \cdot \mathrm{x}$
(8) $x y=\frac{1}{2}(x \cdot y+y \cdot x)$.

The vector space structures of a together with the new compositions [x, y] and xy give us the Lie algebra a^{-}and the Jordan algebra a^{+} respectively.

In the theory of Lie algebras the Poincare-Birkhoff-Witt theorem [13] says that every Lie algebra is isomorphic to a subalgebra of a^{-}, a an associative algebra. However, in the theory of Jordan algebras we don't have the analogue of the Poincaré-Birkhoff-Witt theorem. A Jordan algebra J is said to be special if J is isomorphic to a subalgebra of a^{+}, a associative. The Jordan algebras which are not special are called exceptional Jordan algebras. Every special Jordan algebra is characterized as a subalgebra of a J-algebra. By a J-algebra we mean a commutative algebra K (with product $x y$) having an additional binary operation $[x, y]$ defined on K which is bilinear, antisymmetric. and satisfies

$$
\left[x, y^{2}\right]=2[x, y] y,[x,[y, z]]=4\{(x y) z-(x z) y\}
$$

Every J-algebra is of the form a^{+}, a a suitable
associative algebra.
The Wedderburn structure theorem for associative algebras has a Jordan algebra analogue. That is, any finite-dimensional semisimple Jordan algebra over a field of characteristic zero is a direct sum of ideals which are simple Jordan algebras. We consider the classification oi simple Jordan algebras. It is well known that the problem of simple algebras can be reduced to the study of central simple algebras. There are four classes of central simple Jordan algebras among special Jordan algebras and only one class of exceptional Jordan algebras. That is, according to Albert [1]. Jacobson [8] and Schafer [17] if J is central simple Jordan algebras over an arbitrary field Φ then J is one of the following types:
A. J is of the form a^{+}, a central simple associative or of the form $H(a, \pi)=\left\{a \in a \mid a^{\pi}=a\right\}$ where a is simple with center, a separable quadratic extension of Φ and π isan involution. In the latter case. $J_{P}\left(=P \otimes_{0} J\right)$ is a^{+}for a suitable extension P of Φ.

B-C. $J=H(a, \pi)=\left\{a \in a \mid a^{\pi}=a\right\}$, a a central simple associative algebra over Φ with the involution π. The enveloping associative algebra of J is a. Also $a_{0}\left(=Q Q_{\rho}\right)$ is Ω_{m} for Ω the algebraic closure of Φ and the involution π can be taken to have one of the following two forms in Ω_{m} : $a^{\pi}=a^{\prime}$ or $a^{\pi}=q^{-1} a^{\prime} q$ where a^{\prime} is the transpose of a and q is any non-singular skew symmetric matrix. Then H_{0} is either the set of symmetric matrices or the set of symplectic symmetric matrices $\left(q^{-1} a^{\prime} q=a\right)$. In the first case J is of type B and in the second J is of type C.
D. Let M be a vector space over Φ cquipped with a non-degenerate symmetric bilinear form (a, b). Consider the algebra $\mathrm{J}=\Phi 1 \oplus \mathrm{M}$ determined by (a, b) by the rules that 1 is the identity of J, and for $a, b \in M$ the product $a b$ is given by $a b=(a, b) 1$. Then the algebra J is a Jordan algebra which is central simple if $\operatorname{dim} M>1$ and is called the fordan algebra of the bilinear form
（a，b）in M ．
The algebras A－D are special．Besides these we have

E．The exceptional central simple Jordan algebras．These are $\angle 7$ dimensional and if the base field is algebraically closed ther such an algebra J is isomorphic to the algebra $\mathrm{H}\left(\mathrm{C}_{3}, \gamma\right)$ of $3 \times 3 \gamma$－hermitian（Cayley）matrices of C_{3} relative to the product $x y=\frac{1}{2}(x \cdot y+y \cdot x)$ ．

By virtue of their exceptional character，the exceptional Jordan algebras are perhaps the most interesting of all Jordan algebras．The simple Lie algebras over an algebraically closed field fall into four classes and five exceptional alge－ bras．These classes of Lie algebras have a definite relationship with the classes of Jordan algebras which mentioned above．Particularly the excepti－ onal Lie algebras are closely related to the exceptional simple Jordan algebras．These relat－ ions are investigated by Chevalley，Freudenthal， Jacobson，Schafer，Springer and others．These investigations have led to the different interpre－ tations for the new simple groups and a new model of Cayley planes coordinated by means of Cayley algebras．The general algebraic form of the Jordan－Freudenthal coordinatization of the planes has been given by Springer［20］and by using this certain linear groups of type E_{6} over an arbitrary fields have been studied by Jacobson〔11〕 and Suh［21〕．There are still many unso－ lved problems in these branches to give ample challenge to us．

The representation theory for Jordan algebras which is comparable to its associative counterpart and has not been touched in our brief discussion may be found in the paper［9］of Jacobson．It is also worthwhile noting that there are unsolved problems in the existing theory of Jordan algebias and problems arising from the latest applications of Jordan algebras to geometry．

Bibliography

1．Albert．A．A．，A theory of power associative
commutative algebras，Trans．Amer．Misin．Soc． 69（1950），503－527
2．Albert，A．A．，On simple alternative rings． Canadian J．Math．4（1952），129－135
3．Birkhoff，G．，Universal algebras，Proc．Cana－ dian Math．Congress（1946）
4．Brack，R．H．and E．Kleinfeld，The structure of alternative dinision rings，Proc．Amer． Math．Soc．2（1951），878－890
5．Bruck，R．H．，Recent advances in the founda－ tions of Euclidean plane geometry．Amer． Math．Monthly．62（1955），2－17
6．Chevalley，C．，Sur certains groups simples． Tohoku Math．J．7（1955），14－66
7．Coxeter，H．S．M．，Integral Cayley numbers． Duke Math．J．13（1946），561－578
8．Jacobson，F．D．and N．Jacobson，Classificat－ ion and representation of semi－simple Jordan algebras，Trans．Amer．Math．Soc．，65（1949） 141－169
9．Jacobson，N．，Structure of altermative and Jordan Bimodules．Osaka Math．J．6（1954） $1-70$
10．Jacobson，N．，Composition algebras and their automorphisms，Rend．Cir．Mat．di Palermo． （II），7（1958），55－80
11．Jacobson，N．，Some groups of transformations defined by Jordan algebras 1，II and W，I in Crelle 201（1959）178－195，II in Crelle 204（1960）74－98；园 in Crelle 207（1961） 61 -85
12．Jacobson，N．，Cayley planes，Mimeographed paper（28 pp）
13．Jacobson，N．，Lie Algebras，Interscience （1962）
14．Kaplansky，I．，Infinite－dimensional quadratic forms admitting composition，Proc．Amer． Math．Soc．4（1953），956－960
15．Kleinfeld，E．，Simple alternative rings，
Annals Math．58（1953）544－547
16．Paige，L．J．，Jordan algebras，Studies in Morden Algebra，Math．Ass．Amer．，144－186
17．Schafer，R．D．，The exceptional simple Jordaiz algebras，Amer．J．Math．70（1948），

82－94
18．Schafer．R．D．，An introduction to non－assoc－ iative algebras．Lecture note，Oklahoma State University．
19．Skornyakov，L．A．Alternctive fields，Ukr－ ainskii Math．Zurnal，2（1950），70－85
20．Springer，T．．The projective octave piane． Proc．Kon．Nederl．Akad．Wetensch．（Indaga－
tiones Math．）．63（1960），74－101
21．Suh．T．，On isomor phisms of little projective groups of Cayley planes 1 and II，Indagat－ iones Math．，24（1962），320－339
22．Zorn，M．，The automor phisms of Cayley＇s ncn－associative algebra，Proc．Nat．Acad．Sci．， 21（1935），355－358
（SOGANG COLLEGE）

會費納付案內

 에 支障이 많늡니다，年會費는 當年3月末까지納付하여 주시기 바탑니다．曾費는 年200 원입니 다．参考로 1962年10月9日本會泋再發足衣 以後 의 會費納付成績을 表示하면 다음과 같습니다．

年度	曾員數	曾賈納付人員數
1962	51	42
1963	80	44
1964	80	0

曾費运付處：서울特別市 延世大學校数拲科內大韓數學會

會員動態

金昞熙 漢陽大學矢에서 七荷工科大學學長으 로 築轉
曺기䏒 文教部獎學官에서 清州数育大學學長 으로 築轉
崔春鎬 亿荷工科大學에서 漢陽大學校文理科大嚳數學科로 轉任
林碩垈 延世大學校에서 University of Washin－ gton 으로 留學
金正洙 釜川大學校에서 University of Maryla－ nd 의 research associate 로 渡美
李起安 全北大嚳校에서 漠陽大學校文理科大學數學科로 轉任

