\diamond 論 文 \diamond
 ON THE COMPACTNESS OF THE STRUCTURE SPACE OF A RING

李 禹 翰（Wuhan Lee）

1．INTRODUCTION．Jacobson［1］has shown that a topology may be defined on the set $S(A)$ of primitive ideals of any non－radical ring A ． With this topology S（A）is called the STRUCT． URE SPACE of A．The topology is given by defining closure：If $\mathrm{T}=\{\mathrm{P}\}$ is a set of primitive ideals then T is the set of primitive ideals which contain

$$
\mathrm{D}_{\mathrm{T}}=\cap\{\mathrm{P}\{\mathrm{P} \in \mathrm{~T}\} .
$$

It is well known that if A has an identity el－ ement，then $S(A)$ is compact［2，pp．208］． Moreover M．Schreiber［3］has recently observed that if every two－sided ideal of \mathbf{A} is finitely ge－ nerated．then S（A）is again compact．However， since the condition that A has an identity element neither implies nor is implied by the condition that every ideal of A be finitely generated，it is clear that neither of these conditions is necessary in order that S（A）be compact．R．L．Blair and L．C．Eggan［4］investigated this situation thro－ ughly and found a condition that is both necessary and sufficient for the compactness of $S(A)$ as a consequence of a general lattice－theoretic result． They also obtained a remarkable result for a class of rings consisting of those rings A such that no non－zero homomorphic image of A is a radical ring， stating that the structure space of such ring is compact if and only if A is generated．as an ideal， by a finite number of elements．Recently a direct proof was given by Taikyun Kwun［5］using open sets instead of closure．In view of the fact that the Jacobson radical of an arbitrary ring plays an important role in the structure theory of rings． Presented at the Yonsei Simposium， 9 Oct． 1962，received 2 Mar． 1964
the author tried to find a relationship between the notion of radical and the compactness of a structure space．As a result he found that for a certain class of rings the modularity of the rad－ ical is both necessary and sufficient for compac－ tness of S（A）．and for another class of rings the condition is that A is generated as an ideal by a finite number of elements Section 2 is entirely duc to M．Schreiber［4］and the author has found his method very useful in searching for a link between the compactness and the radical．Section 3 is concerned with properties of the modular ideal which will be used in the proofs of the main theorems．Section 4 and 5 contain the main theorems．

2．OPEN BASIS OF THE TOPOLOGY．For each $x \in A$ write（ x ）for the principal two－sided ideal generated by x ，and let

$$
U_{\mathbf{x}}=\{P \mid P \neq(\mathbf{x}), \text { for all } P \in S(A)\} .
$$

PROPOSITION 1．$\left\{U_{x}\right\}_{x \in A}$ is an open basis of the topology．

PROOF．Since the set $\{P \mid P D(x)\}$ is clearly closed，its complement U_{x} is open．Let U be an open subset of $S(A)$ ，and let $F=U^{C}$（the comp－ lement of U ）．Now suppose $P \in U$ ．Since $F=F$ $=\left\{P^{\prime} \mid P^{\prime} \supseteq D_{P}\right\}$ and $P \& F$ ，we have $P \quad D_{F}$ ．Hence there exists an element a in A such that a be－ longs to D_{F} but not to P ，so that P（a），that is，$P \in U_{3}$ ．Suppose $P^{\prime} \in U_{a n}$ then $P^{\prime} \neq(a)$ and $P \neq D_{P}$ ，so that $P^{\prime} \in F$ ．or $P^{\prime} \in U$ ．Hence $P \in U_{2} \subset U$ ．

PROPOSTTION 2．If a ring A has an identity then $S(A)$ is compact．

PROOF．We prove that any basic open cover has a finite subcover．By Proposition 1，the col－ lection

$$
\left\{\mathrm{U}_{\mathrm{x}}\right\}_{\mathrm{x} \times \mathrm{A}}
$$

is an open cover of $S(A)$. Then

$$
\begin{aligned}
S(A) & =U\left\{U_{x}\right\}_{\times \odot A} \\
& =\left\{P \mid \exists \nu \text { such that } P \equiv\left(a_{\nu}\right)\right\} \\
& =\left\{P \mid I \neq P \sum_{a \times A} \text { (a) }\right)
\end{aligned}
$$

Write

$$
\mathrm{I}=\Sigma_{a c \mathrm{~A}}(\mathrm{a})
$$

In a ring with an identity every two-sided ideal can be imbedded in a primitive ideal [6]. But

$$
\{P \mid F \neq \Omega\}=S(A)
$$

exhausts all primitive ideals. Hence $I=A$, so that the identity clement 1 is in L Hence there exist b_{1}, \cdots, b_{n} in (a) $+\cdots+(b)$ such that the identity $1=b_{1}+\cdots+b_{n}$, so that

$$
A=(a)+\cdots+(b)=1
$$

But this means that there exists a finite subset $E=\{a, \cdots, b\}$ of A such that

$$
\begin{aligned}
S(A) & =\left\{P\left\{F \neq \sum_{a \in A}(a)\right\}\right. \\
& =U\left\{U_{a}\right\}_{\text {ace }} .
\end{aligned}
$$

This proves the Proposition.

3. modular ideals

DEFINITION. A two-sided ideal P is called modular if and only if there exists an element e in A such that for all a of A, a-ea, $a-a e \in P$. The element e is called an identity modulo P.

Evidently, if a two-sided ideal P of ring A is modular with an identity e modulo P, then A / P is a ring with an identity $e+P$.
PROPOSITION 3. An intersection of finite number of modular two-sided ideals is modular.

PROOF. Let P and P^{\prime} be modular two-sided ideals of a ring A, and let e_{1} and e_{3} be the identities modulo P and P^{\prime} respectively. Then it suffices to show that the intersection of P and P^{\prime} is modular. Now put

$$
e=e_{2} \circ e_{1}=e_{2}+e_{1}-e_{3} e_{1}
$$

and

$$
\begin{aligned}
& A(1-e)=\{x-x e \mid x \in A\} \\
& A\left(1-e_{i}\right)=\left\{x-x e_{i} \mid x \in A\right\}
\end{aligned}
$$

It follows $A(1-e)=A\left(1-e_{2}\right)\left(1-e_{1}\right)$
since $\quad x-x e=x-x\left(e_{2} \circ e_{1}\right)$

$$
=x-x\left(e_{2}+e_{1}-e_{2} e_{1}\right)
$$

$$
=x-x e_{2}-\mathrm{xe}_{1}+\mathrm{xe}_{2} \mathrm{e}_{1}
$$

$$
=\left(x-x e_{2}\right)-\left(x-x e_{2}\right) e_{1} .
$$

On the other hand, $A\left(1-e_{2}\right) \subset A$, and this implies

$$
A\left(1-e_{2}\right)\left(1-e_{1}\right) \subseteq A\left(1-e_{1}\right)
$$

But $A\left(1-e_{1}\right) \subseteq P$. Hence we have $A(1-e) \subseteq P$. Since $A\left(1-e_{2}\right) \subseteq P^{\prime}$, we have $A\left(1-e_{2}\right)\left(1-e_{1}\right)$ $\subset^{P^{\prime}}\left(1-e_{1}\right)$. Therefore

$$
\mathrm{A}(1-\mathrm{e}) \subseteq \mathrm{P}^{\prime} \text { and } \mathrm{A}(1-\mathrm{e}) \subseteq P \cap \mathrm{P}^{\prime}
$$

A similar argument implies

$$
(1-e) A \subset P \cap P^{\prime}
$$

Hence $P \cap P^{\prime}$ is modular.
PROPOSITION 4. Every two-sided modular ideal can be imbedded in a primitive ideal.
PROOF. Let (I:A) denote the set of element a of a ring A such that Aa $\subseteq I$ where I is a modular maximal right ideal. Since

$$
(\mathrm{I}: \mathrm{A})=(\mathrm{O}: \mathrm{M})
$$

where M is an irreducible A-module [2, Proposition 2, pp, 6], it follows that (I:A) is primitive ideal. Now let B be a modular two-sided ideal. Since it is well known that every modular right ideal can be imbedded in a modular maximal right ideal, regarding B as a modular right ideal, we can put $B \subseteq 1$. But. $A b \subseteq B$ for every element b of B. Hence $B \subseteq(I: A)$.

4. COMPACTNESS AND THE MODULARITY

 of the radical. By Proposition 5 below, the modularity of the radical of a ring A is sufficient for the compactness of $S(A)$. But it is not necessary for the same reason stated in the INTRODUCTION. An effort was done in searching a class of rings for which the compactness of S(A) necessitate the modularity of the radicals,PROPOSTITION 5. If the radical R of a ring A is modular, then S(A) is compact.

PROOF: Let e be the identity modulo R . Then A / R is clearly a ring with an identity. Since A / R has an identity, the structure space $S(A / R)$ is compact. Now consider a primitive ideal P. Then we have

$$
(A / R) /(P / R) \simeq A / P
$$

Hence P / R is a primitive ideal in A / R for A / P is primitive ring. Conversely any primitive idcal in A / R is of the form P / R, where P is a
primitive ideal. Since the correspondence

$$
\mathrm{P} \longrightarrow \mathrm{P} / \mathrm{R}
$$

preserves arbitrary intersection. it follows that it is a homeomorpism of $\mathrm{S}(\mathrm{A})$ onto the structure space $S(A / R)$ of A / R. Therefore $S(A)$ is compact.
Now we consider a class of ring with the property that
(C) For every U_{a} of $\left\{U_{a}\right\}_{a \& A}, D U_{a}$ is modular.

For such a ring A, a result can be obtained as follows:

PROPOSITION 6. For a ring A satisfying the condition (C), if $S(A)$ is compact, then the radical R of A is modular.

PROOF: It suffices to show that any basic open cover has a finite subcover. Since $\left\{U_{x}\right\}_{x / A}$ is an open cover, there exists a subcover $\left\{\mathrm{U}_{\mathrm{a}}\right\}_{a 0 \mathrm{E}}$ where E is a finite subset of A. Then
$D \cup\left\{U_{a}\right\}=D S_{(A)}=R . \quad(R$: the radical of $A)$ since

$$
\left\{U_{a}\right\}_{\mathrm{a} \in \mathrm{E}}=\mathrm{S}(\mathrm{~A}) .
$$

But

$$
\mathrm{D}_{\cup}\left\{\mathrm{U}_{\mathrm{a}}\right\} \supseteq \mathrm{D}_{\mathrm{Ua}_{a} \cap \mathrm{DUb} \cap \cdots \cap \mathrm{D}_{\mathrm{c}} .}
$$

where $a, b, \cdots, c \in E$.
Hence

$$
\mathrm{R} \supseteq \mathrm{DU}_{\mathrm{a}} \cap \mathrm{DUb}_{\mathrm{b}} \cap \cdots \cap \mathrm{DU}_{\mathrm{c}}
$$

where $a, b, \cdots, c \in E$.
By hypothesis, each $\left\{D_{U_{a}}\right\}, a \in E$, is modular. Then it follows that the radical R of A is modular by Proposition 3. This proves the Proposition.

Combining proposition 5 and 6 , we obtain the following:
THEOREM 1. Let A be a ring with a property that each DU_{a} is modular. Then the structure space of A is compact if and only if the radical R of A is modular.
5. COMPACTNESS AND MODULARTTY OF P RINCIPAL TWOSDED DDEALS. It is pointed out explicitly in [5] that the condition that A is generated, as an ideal, by a finite number of elements is sufficient for the comactress of $S(A)$ regardless of the type of A . We consider a class of rings with the property that (C^{\prime}) Every principal two-sided ideal is modular.

PROPOSITION 7. For a ring A satisfying the condition (C^{\prime}), if $\mathrm{S}(\mathrm{A}$) is compact, then the ring A is generated, as an ideal, by a finite number of elements.

PROOF: Consider the basic open cover $\left\{\mathrm{U}_{\mathrm{x}}\right\}_{\mathrm{x} \in \mathrm{A}}$ Then we have a finite subcover

$$
\left\{U_{a}\right\}_{a \in E}
$$

where E is a finite subset of A. and

$$
\begin{aligned}
S(A) & =U\left\{U_{2}\right\}_{2 \in \mathbb{E}} \\
& =\left\{P\left\{P \neq \sum_{2 \in E}(a)\right\} .\right.
\end{aligned}
$$

Write

$$
\mathrm{B}=\Sigma_{\mathrm{a} \in \mathrm{E}}(\mathrm{a}) .
$$

Since B contains a principal ideal, it is modular. Now suppose B is proper ideal of A. By proposition 4, B can be imbedded in a primitve ideal. This is a contradiction to the fact that

$$
\{P \mid P \neq B\}=S(A)
$$

exhausts all primitive ideals. Hence $B=A$. We state this fact in the following form:

THEOREM 2. Let A be a ring with the property that every principal two-sided ideal is modular. Then the structure space of \mathbf{A} is compact if and only if the ring A is generated, as an ideal, by a finite number of elements.

REMARKS: Consider a ring A with a property that
(C^{\prime}) No non-zero homomorphic umage of A is a radical ring.
R.L. Blair and L.C. Eggan have proved that. for such a ring, the structure space is corapact if and only if A is generated as an ideal by a finite number of elements. It would be interesting to clarify the relations among the classes of rings satisfying codition (C), (C^{\prime}) and ($\mathrm{C}^{\prime \prime}$).

REFERENCES

1. N. Jacobson, A topology of the set of primitive ideals in an arbitrary ring, proc. Nat. Acad. Sci. U.S.A., rol. 31 (1945) pp. 3 3-338.
2. N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloquiums, Publications, vol. 37, Providesce, 1956.

3．M．Schreiber，Compactness of the structure sp－ ace of a ring．proc．Amer．Math．Soc．vol． 8 （1957）pp．684－685．
4．R．L．Blair and L．C．Eggan，On the compactness of the structure space of a ring．Proc．Amer．
Math．Soc．pol． 11 （1960）pp．876－879．

5．Taikyun Kwun，A direct proof of theorem of Blair and Eggan and some results（to appear）．
6．N．Jacobson，The radical and semi－simplicity for arbitrary ring．Amer．J．Math．vol． 65 （1945）pp．300－320．
（Tong Kook University）

研究問題㐿 紹介

1．1962年 9月 24日 美國數毷會 Bulletin 에 提出되고，Bull Vol 69，No 1，P 41에 紹介 된 問題39番，出題者 Joseph Hammer
n^{2} 개의 數가 주어 졌을뗘（모두 다룰 必要는 없음），이돌을 어떻계 配列하면，工 配列新 結果 로 얻는 行列式의 값이 미리 定헤 놓은 값과 같 아 지는가？

2．1963年 8月 7日 Bull에 提出되고，Vol 69， No 6，P 738에 紹介된 o．Taussky 의 問題， 10 番．
A, B 를 代數的閉體위의 $n \times n$ 行列이라고 하자． A 와 可換인 任意纥 行列X와 B 가 可換이면， B 는 그 體에 係數를 가지는 A에 關한 多項式이라야 한다．（H．M．Wedderburn의 Lectures on matrices， Amer．Math．Soc．Colloq．Publ．Vol 17， 1934 를 보라）
最近에 M．Marcus竍 N．A．Khan 은（Canad． J．Math 12（1960），259－277）同結果를 A가 $\mathrm{AX}-\mathrm{XA}$ 와 可換이면 항상 X 는 $\mathrm{XB}-\mathrm{BX}$ 와 可換 이라는 假定下에 證明하였다．

더욱 最近에는 M．F．Smiley（Canad．J．Math． 13 （1961），353－355）에 의하여 이것이 Charact eris tic 이 0 혹은 적어도 n 인 경우를 詁容하고 任意位數의 commutativity 일때에 까지 一般化되 었다．

그러면 Smiley 의 이 結果는 代數的閉䯤아닌體에 때하여도 稹인가？

3．自然畋에 있어서 1 부터 2 n 까지의 數를 한 번뻑 썽서 n 교의 짝

$$
\left(a_{1}, b_{1}\right), \quad\left(a_{2}, b_{2}\right), \cdots,\left(a_{m}, b_{m}\right), a_{i}<b_{i}
$$

을 만든다．지금

$$
\mathrm{c}_{i}=\mathrm{a}_{i}+\mathrm{b}_{\text {c. }} \quad \mathrm{d}_{i}=\mathrm{b}_{i}-\mathrm{a},
$$

라 놓아서 얻는 2 n 개의 數 $\mathrm{c}_{\mathrm{i}}, \mathrm{d}_{\text {}}$ 는 서로 다를수 있켔는가？이 問題는 Mok－Kong Shen 과 Tsen－ Pao Shen 에 依하여，提起된 깃으로서，1962年 9月6日美國數學會의 Bulletin 에 提出되어，Bull Vol 68，No 6，p 557에 問題39番으로서 紹介되 었 던 것이다．
$\mathrm{n}=1,2$ 일때는 答은 No 임을 簡單히 알수 있다． 따라서 問題가 되는 것은 $\mathrm{n} \geqq 3$ 일때이다．그들에 의 한 例로서

$$
\begin{aligned}
\mathrm{n}=3: & (1,5),(2,3),(4,6) \\
\mathrm{n}=6: & (1,10),(2,6),(3,9),(4,11), \\
& (5,8),(7,12) \\
\mathrm{n}=8: & (1,10),(2,14),(3,16),(4,11), \\
& (5,9),(6,12),(7,15),(8,13),
\end{aligned}
$$

을 들수 있다，
그런데 1963年 1月6日 Bull에 提出되고，Vol 69，No 3，p 333에 紹介된 M．Slater 의 問題1番은 이 開題에 대하여 다음과 같이 主張하였다．륵

1 부터 n 까지의 數와 $n+1$ 부터 $2 n$ 까지의 數로 짝을 만들빼 2 n 개 의 和와 差 $\mathrm{b}_{i} \pm \mathrm{i}$ 가 모두 다르게 할수 있켔는가？

Slater 에 의하면 $\mathrm{n}=2,3,6$ 일때는 不可能竔고， 그外의 n에 대하여는 可能하다고 豫想이 되어 있다．그에 의하면 $\mathbf{n} \times \mathbf{n}$ 型 Chess 에서 \mathbf{n} 게의 queen 을 느러 놓고 queen 끼리는 서로 攻撃하지 않는다는 問題와 關聯이 있다교 한다．그리고 Slater 는 다음퐈 같은 例를 들고 있다．

$$
\begin{aligned}
n=4: & (1,7),(2,5),(3,8),(4,6), \\
n=7: & (1,9),(2,14),(3,12),(4,10) \\
& (5,8),(6,13),(7,11), \\
n=9: & (1,14),(2,18),(3,11),(4,13), \\
& (5,16),(6,12),(7,17),(8,15), \\
& (9,10)
\end{aligned}
$$

