
ON THE COMPACTNESS OF THE STRUCTURE SPACE OF A RING

~ (Wuhan Lee)

1. INTRODUCTION Jacobson (l] has shown

that a topology may be defined on the set SeA) .

of primitive ideals of any non-radical ring A
With this topology SCA) is called the STRUCT·

URE SPACE of A The topology is given by

defining closure: If T= (P} is a set of primitive

ideals then T is the set of primitive ideals which

contain
0,.= n{PIPE T}.

It is well known that if A has an identity el·

ement. then SCA) is compact (2. pp. 208).

Moreover M. Schreiber (3) has recently observed

that if every two-sided ideal of A is finitely ge

nerated. then SCA) is again compact. However,

since the condition that A has an identity element

neither implies nor is implied by the condition

that every ideal of A be finitely generated. it is

clear that neither of these conditions is necessary

in order that SCA) be compact. R. L. Blair and

L.C. Eggan (4) investigated this situation thro

ughly and found a condition that is both necessary

and sufficient for the compactness of SCA) as a
consequence of a general lattice-theoretic result.

They also obtained a remarkable result for a class
of rings consisting of those rings A such that no

non-zero homomorphic image of A is a radical ring,

stating that the structure space of such ring is

compact if and only if A is generated. as an ideal.

by a finite number of elements. Recently a direct

proof was given by Taikyun Kwun (5) using open

sets instead of closure. In view of the fact that

the Jacobson radical of an arbitrary ring pl2_Ys an

important role in the structure theory of rings.
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the author tried to find a relationship betweell

the notion of radical and the compactness of a

structure space. As a result he found that for a

certain class of rings the modularity of the rad

ical is both necessary and sufficient for compac

tness of SCA). and for another class of rings the

condition is that A is generated as an ideal by

a fmite number of elements. Section 2 is entirely

due to M. Schreiber (4) and the author has found

his method very useful in searching for a link

between the compactness and the radical. Section

3 is concerned with properties of the modular

ideal which will be' used in the proofs of the

main theorems. Section 4- and 5 contain the main.

theorems.

2. OPEN BASIS OF THE TOPOLOOY. For

each xEA write (x) for the principal two-sided
ideal generated by x. and let

Ux= {P IP=l2(x). for all PE SeA)}.

PROPOSITION 1. lUx} 1UA is an open basis ot

the topology.

PROOF. Since the set {P IP.::l(x)} is clearly

closed, its complement Ux is open. Let U be an

open subset of SCA), and let F=UC (the comp

lement of U). Now suppose PEU. Since F=F
= {F' Ip/::2Dr>} and PG F. we have P Dr>. Hence

there exists an element a in A such that a be

longs to DF but not to p. so that P (a). that

is, PE U... Suppose pI E U... then pI=I=-(a) and

P~F. so that F' 1$ F. or p/€ U. Hence PE UaCU.

PROPOSITION 2. If a ring A has an identity

then SeA) is compact.

PROOF. We prove that any basic open cover

has a finite subcover. By Proposition 1. the col

lection



Write

and

A(l-e)= {x-xe rxEA},

A(l-eD= {x-xCII xEA}.

It follows A(l-e)=A(l-~)(l-e,)

lUx} X_A

is an open cover of SeA). Then

SeA)=UlUx} x_A

= {P 13 ).I such that P:;J2Cav)}

= {P lI;:j~I:a.A Ca)}.

(AfR)f(PfR)t;;;tAfP.

Hence PfR is a primitive ideal in AfR for

AlP is primitive ring. Conversely any primitive

ideal in AfR is of the form PjR, where P is a

= (x-xe2)-(x-xe2)el•

On the other hand, A(l-e2)cA. and this

implies

A(l-e2)(l-e,)k:ACl-e,).

But A(l-eJ)c:P. Hence we have A(l-e)cP.

Since A(l-e2)k:P'. we have A(l-e2)(l-el)

cP/(l-ea. Therefore

A(l-e)c;P' and A(l-e)cPnP'.

A similar argument implies
(l-e)Acpnp'·

Hence P n P' is modular.

PROPOSITION 4. Every two-sided modular

ideal can be imbedded in a primitive ideal.

PROOF. Let (I:A) denote the set of element

a of a ring A such that AacI where I is a mo

dular maximal right ideal. Since

(I:A)=CO:M)

where M is an irreducible A-module (2, Pro

position 2. pp. 6). it follows that (1:A) is

primitive ideal. Now let B be a modular two-si

ded. ideal. Since it is well known that every

modular right ideal can be imbedded in a modu

lar maximal right ideal. regarding B as a modular

right ideal. we can put Bb!. But· Abc:B for

every element b of B. Hence Bc(l:A).

4. COMPACTNFSS AND THE MODULARITY

OF THE RADICAL. By Proposition 5 below.

the modularity of the radical of a ring A is su

fficient for the compactness of SeA). But it is

not necessary for the same reason stated. in the

INTRODUCTION. An effort was done in searc

hing a class of rings for which the compactness

of SCA) necessitate the moduIarity of the radicals.

PROPOSITION 5. H the radical R of a ring

A is modular. then SCA) is compact.

PROOF: Let e be the identity modulo R. Then

AfR is clearly a ring with an identity. Since AfR

has an identity. the structure space SCAfR) is

compact. Now consider a primitive ideal P. Then

we have

x-xe=x-x(e2 0 eJ)

=x-xC~+eJ-~e,)

=x-xez-xeJ+x~eJ

I=E__
A

Ca).

In a ring with an identity every two-sided ideal

can be imbcdded in a primitive ideal (6). But

{P j F=tI} =SCA)

exhausts aB primitive ideals. Hence I=A, so

that the identity element I is in 1 Hence there

exist b,•...• bn in (a)+··+(b) sU:ch that the

identity 1= b,+ ... + bn• so that

A=(a)+···+(b)=l

But this means that there exists a finite subset

E= {a. ···.b} of A such that

SCA)= {PIF$E""A(a)}

= U (U"}"'E'

This proves the Proposition.

3. MODULAR IDEALS.

DEFINITION. A two-sided ideal P is called

modular if and only if there exists an element

e in A such that for all a of A, a-ea, a-ae E P.

The element e is called an identity modulo P.

Evidently. if a two-sided ideal P of ring A is

modular with an identity e modulo P, then AlP
is a ring with an identity e+P.

PROPOSITION 3. An intersection of finite

number of modular two-sided ideals is modular.

PROOF. Let P and pI be modular two-sided

ideals of a ring A. and let eJ and ~ be the

identities modulo P and pI respectively. Then it

suffices to show that the intersection of P and

pI is modular. Now put

e=~ 0 eJ=~+e,-~el

since
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primitive ideal. Since the correspondence

P-4PjR

preserves arbitrary intersection. it follows that it

is a homeomorpism of SCA) onto the structure

space S(AjR) of AIR. Therefore SeA) is com

pact

Now we consider a class of ring with the
property that

(C) For every D. of fU.} ....A. Du. is modular.

For such a ring A. a result can be obtained

as follows:

PROPOSITION 6. For a ring A satisfying the

condition CC). if SCA) is compact, then the ra
dical R of A is modular.

PROOF: It suffices to show that any basic

open cover has a finite subcover. Since {Dx} xeA

is an open cover. there exists a subcover {D.} aeE

where E is a finite subset of A. Then

Du{u.l =Ds{A)=R. (R: the radical of A)

since

But
D u{u.} :::2Du.nDubn...nDue.

where a.b, .. ·,c € E.

Hence
R.:::2Dua nDubn...nDue.

where a. b, "', c c: E.

By hypothesis. each {Dua}. ac:E. is modular.

Then it follows that the radical R of A is mo

dular by Proposition 3. This proves the Propos

ition.

Combining proposition 5 and 6, we obtain the

following:

TBmREM. 1. Let A be a ring with a pr-

operty that each Du. is modular. Then the str

ucture space of A is compact if and only if the

radical R of A is modular.

5. COMPACTNmiS AND MODULARITY OF P

IUNCIPAL TWo-sIDED IDEALS. It is pointed

out explicitly in (5) that the condition that A is

generated. as an ideal. by a finite number of

elements is sufficient for the comactness of SCA)

regardless of the type of A. We consider a class

of rings with the property that

(C') Every principal two-sided ideal is modular.

5

PROPOSITION 7. For a rir.g A satisfying

the condition CC'), if SCA) IS comp3.ct, then the

ring A is generated. as an ideal. by a finit::l

number of elements.

PROOF: Consider the basic open cover fUll] xfA

Then we have a finite subcover

{D.} a€E

where E is a finite subset of A. and

SCA)= U(D.I.fiE

= {P[P=.t'X,.,E(a)).

Write

B=E.m(a).

Since B contains a principal ideal. it is modu

lar. Now suppose B is proper Ideal of A. By

proposition 4, B can be imbedded in a primitve

ideal This is a contradiction to th3 fact that

{PIP$B} =SCA)

exhausts all primitive ideals. Hence B=A.

We state this fact in the following fonn:

THEOREM: 2. Let A be a ring with the

property that every principal two-sided ideal is

modular. Then the 'structure space of A is com

pact if and only if the ring A is generated. as

an ideal by a finite number of elements.

REJIlAKKS: Consider a ring A with a pr0-

perty that

(C") No non-zero homomorphic J:JDagC of A is a
radical ring.

R.L. Blair and L.C. Eggan have proved that.

for such a ring, the structure space is compact

if and only if A is generated as an ideal by a fi

nite number of elements. It would be interesting

to clarify the relations among the classes of rin

gs satisfying codition CC). CC') and CC").
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