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ON THE COMPACTNESS OF THE STRUCTURE SPACE OF A RING

1. INTRODUCTION.  Jacobson (1) has shown

that a topology may be defined on the set S(A)-

of primitive ideals of any noa-radical ring A
With this topology SCA) is called the STRUCT-
URE SPACE of A. The topology is given by
defining closure: If T={P} is a set of primitive
ideals then T is the set of primitive ideals which
contain
D= {P|PeT}.

It is well known that if A has an identity el-
ement, then S(A) is compact (2, pp. 208).
Moreover M. Schreiber (3) has recently observed

that if every two-sided ideal of A is finitely ge-

nerated, then SCA) is again compact However,
since the condition that A has an identity element
neither implies nor is implied by the condition
that every ideal of A be finitely generated, it is
clear that neither of these conditions is necessary
in order that S(A) be compact. R. L. Blair and
L.C. Eggan (4] investigated this situation thro-
ughly and found a condition that is both necessary
and sufficient for the compactness of 5(A) as a
consequence of a general lattice-theoretic result.
They also obtained a remarkable result for a class
of rings consisting of those rings A such that no
non-zero homomorphic image of A is a radical ring,
stating that the structure space of such ring is
compact if and only if A is generated, as an ideal,
by a finite number of elements. Recently a direct
proof was given by Taikyun Kwun [5] using open
sets instead of closure. In view of the fact that
the Jacobson radical of an arbitrary ring plays an
important role in ‘the structure theory of rings,
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the author tried to find a relationship between
the notion of radical and the compactness of a
structure space. As a result he found that for a
certain class of rings the modularity of the rad-
ical is both necessary and sufficient for compac-
tness of S(A). and for another class of rings the
condition is that A is generated as an ideal by
a finite number of elements. Section 2 is entirely
due to M. Schreiber (4] and the author has found
his method very useful in searching for a link
between the compactness and the radical. Section
3 is concerned with properties of the modular
ideal which will be used in the proofs of the
main theorems. Section 4 and 5 contain the main
theorems.

2. OPEN BASIS OF THE TOPOLOGY. For
each xeA write (x) for the principal two-sided
ideal generated by x, and let

Uz= {P|PP(x). for all PeSCA)}.

PROPOSITION 1. {Ux}xa is an open basis of
the topology.

PROOF. Since the set {P|PD(x)} is clearly
closed, its complement U, is open. Let U be an
open subset of SCA), and let F=UC (the comp-
lement of U). Now suppose Pell. Since F=F
= {P'|P'2oD¢} and P¢F, we have P Dy Hence
there exists an element a in A such that a be-
longs to Dy but not to P, so that P (a), that
is, PeU, Suppose P’€¢U, then P'5=(a) and
P+£Dy, so that P/¢F. or P/e U. Hence P e U.CU.

PROPOSITION 2. If a ring A has an identity
then SCA) is compact.

PROOF. We prove that any basic open cover
has a finite subcover. By Proposition 1, the col-
lection



{Ux} xea
is an open cover of SCA). Then
S(AY=1) {Ux} xea
={P|qg v such that P3(a,)}
= {P]15%a, (a)}.
Write
I=%.4 ().
In a ring with an identity every two-sided ideal
can be imbedded in a primitive ideal [6)]. But
{P|FEH} =S(A)
exhausts ali primitive ideals. Hence I=A, so
that the identity element 1 is in L Hence there
exist bye-by in (@)+---+(b) such that the
identity l=b,4----4b, so that
A=@)+-+®)=L
But this means that there exists a finite subset
E={a,---,b} of A such that
S(A) = {P | FERE..a ()}
= U {Ua) aeE.
This proves the Proposition.
3. MODULAR IDEALS
DEFINITION. A two-gided ideal P is called
modular if and only if there exists an element
e in A such that for all a of A, a-ea, a-aee P.
The element e is called an identity modulo P.
Evidently, if a two-sided ideal P of ring A is
modular with an identity e modulo P, then A/P
is a ring with an identity e4-P.
PROPOSITION 3, An intersection of finite
number of modular twe-sided ideals is modular.
PROOF. Let P and P’ be modular two-sided

ideals of a ring A, and let e, and e; be the
identities modulo P and P’ respectively. Then it
suffices to show that the intersection of P and
P’ is modular. Now put
€=¢; o €, =6,1€,—ee
and
A(l—e)= [x—=xe[xeA},
A —e)= {x—xe; | xcA}.
It follows A(l—e)=A(l—e)(1—e)
i x—xe=x—x(e; o €,)
=x—X(&;}e,—ee,;)
=X-—X€;—Xe, +xe¢,

smce

=(x—xe,)—(x—xe,)e,.
On the other hand, A(l—e,)CA, and this
implies
A(l—e (A —edCA(1—e).

But A(1—e)CP. Hence we have A(l—e)CP.
Since A(1—e, )P, we have A(l—e)(1—e;)
<P’(1—e,). Therefore

A(l—e)CP’ and AQ—e)cPN\P.
A similar argument implies

A—-e)ACPOP.

Hence PP’ is modular.

PROPOSITION 4, Every two-sided modular
ideal can be imbedded in a primitive ideal.

PROOF. Let (I:A) denote the set of element
a of a ring A such that AacCl where Iis a mo-
dular maximal right ideal. Since

(:A)=(0:M)

where M is an irreducible A-module {2, Pro-
position 2, pp. 6], it follows that (1:A) is
primitive ideal. Now let B be a modular two-si-
ded ideal. Since it is well known that every
modular right ideal can be imbedded in a modu-
lar maximal right ideal, regarding B as a modular
right ideal, we can put Bl But. AbCB for
every element b of B. Hence BCC(I:A).

4., COMPACTNESS AND THE MODULARITY
OF THE RADICAL. By Proposition 5 below,
the modularity of the radical of a ring A is su-
fficient for the compactness of SCA). But it is
not necessary for the same reason stated in the
INTRODUCTION. An effort was done in searc-
hing a class of rings for which the compactness
of SCA) necessitate the modularity of the radicals,

PROPOSITION 5, If the radical R of a ring
A is modular, then SCA) is compact.

PROOF: Let e be the identity modulo R. Then
A/R is clearly a ring with an identity. Since A/R
has an identity, the structure space SCA/R) is
compact. Now consider a primitive idea! P. Then
we have

(A/RD/®/RIA/P. _,
Hence P/R is a primitive ideal in A/R for
A/P is primitive ring. Conversely any primitive
ideal in A/R is of the form P/R, where P is a



primitive ideal. Since the correspondence
P—P/R

preserves arbitrary intersection, it follows that it

is a homeomorpism of SCA) onto the structure

space SCA/R) of A/R. Therefore SCA) is com-

pact.

Now we consider a class of ring with the
property that

(C) For every U of {Us}as, Du.is medular.

For such a ring A, a result can be obtained
as follows:

PROPOSITION 6. For a ring A satisfying the
condition (C), if SCA) is compact, then the ra-
dical R of A is modular.

PROOF: It suffices to show that any basic
open cover has a finite subcover. Since {Ug}zea
is an open cover, there exists a subcover {Ulag
where E is a finite subset of A. Then

Dyu{Ual =D8,=R. (R: the radical of A)
since
{Ua} e =SCA).

But

Dy{va} 2Dt N Dus N -+ N Dok,
where a,b,---,c¢E.
Hence

RoDu.Dus---NPDu.,

where a,b,---,c¢E.

By hypothesis, each {Dy.}. acE, is modular.
Then it follows that the radical R of A is mo-
dular by Proposition 3, This proves thc Propos-
ition.

Combining proposition 5 and §, we obtain the
following: :

THEOREM 1. iet A be a ring with a pr-
operty that each Dy, is modular. Then the str-
ucture space of A is compact if and only if the
radical R of A is modualar.

5., COMPACTNESS AND MODULARITY OF P-
RINCIPAL TWO-SIDED IDEALS. It is pointed
out explicitly in (5] that the condition that A is
generated, as an ideal, by a finite number of
elements is sufficient for the comactuess of SCA)
regardless of the type of A. We consider a class
of rings with the property that
(C’) Every principal two-sided ideal is modular.

PROPOSITION 7. For a ring A satisfying
the condition (C”), if SCA) is compact, then the
ring A is generated, as an ideal, by a finitz
number of elements.

PROOF: Consider the basic open cover {Ux}xes
Then we have a finite subcover

{Ua}ace
where E is a finite subset of A. and
SCAY=U {Ud}oeg
= (PP ()},
Write
B=Z.¢e(a).

Since B contains a principal ideal, it is modu-
lar. Now suppose B is proper ideal of A. By
proposition 4, B can be imbedded in a primitve
ideal. This is a contradiction to the fact that

{P|P=EB} =5(A)
exhausts all primitive ideals. Hence B=A.
We state this fact in the following form:

THEOREM 2. Let A be a ring with the
property that every principal two-sided ideal is
modular. Then the ‘structure space of A is com-
pact if and only if the ring A is generated, as
an ideal, by a finite number of elements.

REMARKS: Consider a ring A with a pro-
perty that
(C'") No non-zero homomorphic mmage of A is a

radical ring.

R.L. Blair and L.C. Eggan have proved that,
for such a ring, the structure space is compact
if and only if A is generated as an ideal by a fi-
pite number of elements. It would be interesting
to clarify the relations among the classes of rin-
gs satisfying codition (C), (C’) and (C').
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