
ON THE COMPACTNESS OF THE STRUCTURE SPACE OF A RING

~ (Wuhan Lee)

1. INTRODUCTION Jacobson (l] has shown

that a topology may be defined on the set SeA) .

of primitive ideals of any non-radical ring A
With this topology SCA) is called the STRUCT·

URE SPACE of A The topology is given by

defining closure: If T= (P} is a set of primitive

ideals then T is the set of primitive ideals which

contain
0,.= n{PIPE T}.

It is well known that if A has an identity el·

ement. then SCA) is compact (2. pp. 208).

Moreover M. Schreiber (3) has recently observed

that if every two-sided ideal of A is finitely ge­

nerated. then SCA) is again compact. However,

since the condition that A has an identity element

neither implies nor is implied by the condition

that every ideal of A be finitely generated. it is

clear that neither of these conditions is necessary

in order that SCA) be compact. R. L. Blair and

L.C. Eggan (4) investigated this situation thro­

ughly and found a condition that is both necessary

and sufficient for the compactness of SCA) as a
consequence of a general lattice-theoretic result.

They also obtained a remarkable result for a class
of rings consisting of those rings A such that no

non-zero homomorphic image of A is a radical ring,

stating that the structure space of such ring is

compact if and only if A is generated. as an ideal.

by a finite number of elements. Recently a direct

proof was given by Taikyun Kwun (5) using open

sets instead of closure. In view of the fact that

the Jacobson radical of an arbitrary ring pl2_Ys an

important role in the structure theory of rings.
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the author tried to find a relationship betweell

the notion of radical and the compactness of a

structure space. As a result he found that for a

certain class of rings the modularity of the rad­

ical is both necessary and sufficient for compac­

tness of SCA). and for another class of rings the

condition is that A is generated as an ideal by

a fmite number of elements. Section 2 is entirely

due to M. Schreiber (4) and the author has found

his method very useful in searching for a link

between the compactness and the radical. Section

3 is concerned with properties of the modular

ideal which will be' used in the proofs of the

main theorems. Section 4- and 5 contain the main.

theorems.

2. OPEN BASIS OF THE TOPOLOOY. For

each xEA write (x) for the principal two-sided
ideal generated by x. and let

Ux= {P IP=l2(x). for all PE SeA)}.

PROPOSITION 1. lUx} 1UA is an open basis ot

the topology.

PROOF. Since the set {P IP.::l(x)} is clearly

closed, its complement Ux is open. Let U be an

open subset of SCA), and let F=UC (the comp­

lement of U). Now suppose PEU. Since F=F
= {F' Ip/::2Dr>} and PG F. we have P Dr>. Hence

there exists an element a in A such that a be­

longs to DF but not to p. so that P (a). that

is, PE U... Suppose pI E U... then pI=I=-(a) and

P~F. so that F' 1$ F. or p/€ U. Hence PE UaCU.

PROPOSITION 2. If a ring A has an identity

then SeA) is compact.

PROOF. We prove that any basic open cover

has a finite subcover. By Proposition 1. the col­

lection



Write

and

A(l-e)= {x-xe rxEA},

A(l-eD= {x-xCII xEA}.

It follows A(l-e)=A(l-~)(l-e,)

lUx} X_A

is an open cover of SeA). Then

SeA)=UlUx} x_A

= {P 13 ).I such that P:;J2Cav)}

= {P lI;:j~I:a.A Ca)}.

(AfR)f(PfR)t;;;tAfP.

Hence PfR is a primitive ideal in AfR for

AlP is primitive ring. Conversely any primitive

ideal in AfR is of the form PjR, where P is a

= (x-xe2)-(x-xe2)el•

On the other hand, A(l-e2)cA. and this

implies

A(l-e2)(l-e,)k:ACl-e,).

But A(l-eJ)c:P. Hence we have A(l-e)cP.

Since A(l-e2)k:P'. we have A(l-e2)(l-el)

cP/(l-ea. Therefore

A(l-e)c;P' and A(l-e)cPnP'.

A similar argument implies
(l-e)Acpnp'·

Hence P n P' is modular.

PROPOSITION 4. Every two-sided modular

ideal can be imbedded in a primitive ideal.

PROOF. Let (I:A) denote the set of element

a of a ring A such that AacI where I is a mo­

dular maximal right ideal. Since

(I:A)=CO:M)

where M is an irreducible A-module (2, Pro­

position 2. pp. 6). it follows that (1:A) is

primitive ideal. Now let B be a modular two-si­

ded. ideal. Since it is well known that every

modular right ideal can be imbedded in a modu­

lar maximal right ideal. regarding B as a modular

right ideal. we can put Bb!. But· Abc:B for

every element b of B. Hence Bc(l:A).

4. COMPACTNFSS AND THE MODULARITY

OF THE RADICAL. By Proposition 5 below.

the modularity of the radical of a ring A is su­

fficient for the compactness of SeA). But it is

not necessary for the same reason stated. in the

INTRODUCTION. An effort was done in searc­

hing a class of rings for which the compactness

of SCA) necessitate the moduIarity of the radicals.

PROPOSITION 5. H the radical R of a ring

A is modular. then SCA) is compact.

PROOF: Let e be the identity modulo R. Then

AfR is clearly a ring with an identity. Since AfR

has an identity. the structure space SCAfR) is

compact. Now consider a primitive ideal P. Then

we have

x-xe=x-x(e2 0 eJ)

=x-xC~+eJ-~e,)

=x-xez-xeJ+x~eJ

I=E__
A

Ca).

In a ring with an identity every two-sided ideal

can be imbcdded in a primitive ideal (6). But

{P j F=tI} =SCA)

exhausts aB primitive ideals. Hence I=A, so

that the identity element I is in 1 Hence there

exist b,•...• bn in (a)+··+(b) sU:ch that the

identity 1= b,+ ... + bn• so that

A=(a)+···+(b)=l

But this means that there exists a finite subset

E= {a. ···.b} of A such that

SCA)= {PIF$E""A(a)}

= U (U"}"'E'

This proves the Proposition.

3. MODULAR IDEALS.

DEFINITION. A two-sided ideal P is called

modular if and only if there exists an element

e in A such that for all a of A, a-ea, a-ae E P.

The element e is called an identity modulo P.

Evidently. if a two-sided ideal P of ring A is

modular with an identity e modulo P, then AlP
is a ring with an identity e+P.

PROPOSITION 3. An intersection of finite

number of modular two-sided ideals is modular.

PROOF. Let P and pI be modular two-sided

ideals of a ring A. and let eJ and ~ be the

identities modulo P and pI respectively. Then it

suffices to show that the intersection of P and

pI is modular. Now put

e=~ 0 eJ=~+e,-~el

since
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primitive ideal. Since the correspondence

P-4PjR

preserves arbitrary intersection. it follows that it

is a homeomorpism of SCA) onto the structure

space S(AjR) of AIR. Therefore SeA) is com­

pact

Now we consider a class of ring with the
property that

(C) For every D. of fU.} ....A. Du. is modular.

For such a ring A. a result can be obtained

as follows:

PROPOSITION 6. For a ring A satisfying the

condition CC). if SCA) is compact, then the ra­
dical R of A is modular.

PROOF: It suffices to show that any basic

open cover has a finite subcover. Since {Dx} xeA

is an open cover. there exists a subcover {D.} aeE

where E is a finite subset of A. Then

Du{u.l =Ds{A)=R. (R: the radical of A)

since

But
D u{u.} :::2Du.nDubn...nDue.

where a.b, .. ·,c € E.

Hence
R.:::2Dua nDubn...nDue.

where a. b, "', c c: E.

By hypothesis. each {Dua}. ac:E. is modular.

Then it follows that the radical R of A is mo­

dular by Proposition 3. This proves the Propos­

ition.

Combining proposition 5 and 6, we obtain the

following:

TBmREM. 1. Let A be a ring with a pr-

operty that each Du. is modular. Then the str­

ucture space of A is compact if and only if the

radical R of A is modular.

5. COMPACTNmiS AND MODULARITY OF P­

IUNCIPAL TWo-sIDED IDEALS. It is pointed

out explicitly in (5) that the condition that A is

generated. as an ideal. by a finite number of

elements is sufficient for the comactness of SCA)

regardless of the type of A. We consider a class

of rings with the property that

(C') Every principal two-sided ideal is modular.
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PROPOSITION 7. For a rir.g A satisfying

the condition CC'), if SCA) IS comp3.ct, then the

ring A is generated. as an ideal. by a finit::l

number of elements.

PROOF: Consider the basic open cover fUll] xfA

Then we have a finite subcover

{D.} a€E

where E is a finite subset of A. and

SCA)= U(D.I.fiE

= {P[P=.t'X,.,E(a)).

Write

B=E.m(a).

Since B contains a principal ideal. it is modu­

lar. Now suppose B is proper Ideal of A. By

proposition 4, B can be imbedded in a primitve

ideal This is a contradiction to th3 fact that

{PIP$B} =SCA)

exhausts all primitive ideals. Hence B=A.

We state this fact in the following fonn:

THEOREM: 2. Let A be a ring with the

property that every principal two-sided ideal is

modular. Then the 'structure space of A is com­

pact if and only if the ring A is generated. as

an ideal by a finite number of elements.

REJIlAKKS: Consider a ring A with a pr0-

perty that

(C") No non-zero homomorphic J:JDagC of A is a
radical ring.

R.L. Blair and L.C. Eggan have proved that.

for such a ring, the structure space is compact

if and only if A is generated as an ideal by a fi­

nite number of elements. It would be interesting

to clarify the relations among the classes of rin­

gs satisfying codition CC). CC') and CC").
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