Abstract
Relative surface tensions of aqueous solutions of KCl, KI and NaI have been measured at 25$^{circ}C$(30$^{circ}C$ for KCl) over a concentration range of 0.0001 to 3M solution. It was observed that there was a minimum in the surface tension-concentration curve for the extremely dilute solutions. Appearance of the minimum has been reported for the other salt solutions so far reported. At moderate and high concentration, these three salts increase the surface tension of water almost linearly as concentration increased, and behaved as a typical "capillary inactive substance", whereas they acted as a capillary active substance in very dilute solutions. Since the Onsager-Samaras equation for the surface tension as a function did not agree with the experimental data, the following empirical equations for the whole concentration range used were obtained. ${\sigma}_r\;=\;1\;+\;0.00072{\sqrt{c}}\;-\;0.0011c\;+\;0.023c^2\; for\;KCl\;at\;30^{\circ}C$ ${\sigma}_r\;=\;1\;+\;0.0077{\sqrt{c}}\;-\;0.0015c\;+\;0.024c^2\;for\;KI\;at\;25^{\circ}C$ ${\sigma}_r\;=\;1\;+\;0.00011{\sqrt{c}}\;-\;0.0090c\;+\;0.077c^2\;for\;NaI\;at\;25^{\circ}C$