초록
筆者는 週期表 1族에 適用되는 液體金屬의 模型으로서 純粹한 液體金屬은 2原子分子의 單振動子로 構成되면 이 振動子는 自己가 古有하는 싸이트(site)種에 따라 두가지 에너지狀態中 하나를 取하게 된다고 假想함으로써 液體狀態和를 誘導하였다. 이 狀態和食은 本質的으로는 하나의 物質固有의 常數(${\Theta}$)를 內包하고 있으며 液體金屬에 대하여 이 特性値를 줌으로써 여러가지 熱力學的 性質 즉 蒸氣壓, 液體의 엔트로리, 比熱 等을 算出하여 實測値와 比較하여 보았다. 그 結果는 滿足스러운 一致를 보여준다.
The author assumes that pure liquid metal is composed of molecular oscillators whose energy states are classified into two subgroups, i.e., A and B states, each being accesible to either one of the two sorts of lattice sites. The partition function involves constants characteristic of substance, which are obtainable from the Debye characteristic temperature assigned to its solid state. Calculation has been made for the various thermodynamic properties such as the vapor pressure, the entropy, and the heat capacity of liquid metals of GroupⅠelements over the temperature range from the melting points to the boiling points. The theoretical values thus obtained are in good accordances with those observed, within experimental error, although a slight derivation is observed in the atomic heat capacity.