NOTE ON A MAPPING OF CONNECTED COMPONENTS

By Mi-Soo Pae

Let f be one-to-one bicontinuous mapping between a topological space X and a topological space Y. Then X and Y are homeomorphic, so

that there exists one-to-one correspondence between connected components of X and connected components of Y, by f. But there is the another condition for this matter, where f is not a homeomorphic mapping.

The correspondence f is closed if A a closed subset of X then f(A) is closed in Y; f is connected if C a connected subset of X implies f(C) is a connected subset of Y. [2]

For mapping f, if f^{-} is closed then f is continuous mapping from X to Y. [1]

LEMMA 1. f is closed (preimage of f), then f is connected. [1]

We assume the following property for mapping f:

(P) For each closed subsets A, B, f(A) ∩ f(B) ≠ φ
there exists at least one element y∈f(A) ∩ f(B)
such that there is some x∈f⁻¹(y) having sequences

 $\{a_n\}\subset A, \{b_n\}\subset B, a_n \rightarrow x, b_n \rightarrow x.$

LEMMA 2. f is closed mapping having property (P). If A, B are closed sets: $A \cap B = \phi$, and then $f(A) \cap f(B) = \phi$.

Proof. If $f(A) \cap f(B) \neq \phi$, there exists a $x \in A \cap B$, by condition (P). Since $A \cap B = \phi$ and A, B are closed sets, then $f(A) \cap f(B) = \phi$, LEMMA 3. f is closed mapping with property (P). For any set M of Y, if A, B are closed sets of X such that $A \cap B \cap f^{-1}(M) = \phi$, then f(A), f(B) are disjoint in M.

Proof. If it is not so: $f(A) \cap f(B) \cap M \neq \phi$. There is a x belonging to $f^{-1}(y)$, such that $a_n \rightarrow x$, $b_n \rightarrow x$, $\{a_n\} \subset A$, $\{b_n\} \subset B$ and $x \in j^{-1}(M)$, because

 $j^{-1}(y) \subset f^{-1}[f(A) \cap f(B) \cap M] = f^{-1}[f(A) \cap M] \cap f^{-1}[f(B \cap M]$ $= f^{-1}[f(A)] \cap f^{-1}[f(B)] \cap f^{-1}(M).$

82 Mi-Soo Pae

 $x \equiv \overline{A} \cap \overline{B} \cap f(M) = A \cap B \cap f^{-1}(M).$ Hence Since A, B is disjoint in f(M), then f(A), f(B) disjoint in M. LEMMA 4. f is biclosed mapping with properdy (P) and C is a connected component of X, then f(C) is connected component of Y. Proof. f(C) is connected by lemma 1. For any connected subset C' of Y containing f(C), $f^{-1}(C')$ contains C. Now A, B are closed sets of X such that $f^{-1}(C') \subset A \cup B$, and A, B are disjoint in $f^{-1}(C')$, then by using lemma 3, f(A), f(B) are disjoint in C'. f(A), f(B) are closed, for f is closed mapping, and $f(A) \cup f(B) > C'$. Since C' is connected set in Y, $f(A) \cap C' = \phi$ or $f(B) \cap C' = \phi$. Then $A \cap f^{-1}(C') = \phi$, or $B \cap f^{-1}(C') = \phi$, for $A \cap f^{-1}(C') < f^{-1}(f(A)) \cap f^{-1}(C') = f^{-1}(f(A) \cap C') = \phi.$ Hence $f^{-1}(C')$ is connected. Then $f^{-1}(C')$ is equal to C, because C is a connected component of X and C is contained in the connected set $f^{-1}(C')$. So that C' is equal to f(C), i. e. f(C) is a connected component of Y.

REMARK. f is closed mapping with property (P), then if M disconnected in X implies f(M) is a disconnected set of Y.

THEOREM. For two topological spaces X, Y, if there exists biclosed mapping with property (P), then there is one-to-one correspondence between connected components of X and connected components of Y. Proof. Let us put $X = \bigcup_{\alpha \in I} C_{\alpha}$, $Y = \bigcup_{\beta \in J} C'_{\beta}$, where C_{α} is a connected component of X for all α belonging to I, and C'_{β} is a connected component of Y for all β belonging to J. For each α belonging to I there is a β belonging to J, such that $f(C_{\alpha}) = C'_{\beta}$ by lemma 4. Referring the above remark, $f^{-1}(C'_{\beta})$ is connected. And for the connected set C containing $j^{-1}(C'_{\beta})$, f(C) is contained in C'_{β} , since C'_{β} is a connected component. Then $f^{-1}(C'_{\beta})$ is a connected component of X. So there is an α belonging to I such that $j^{-1}(C'_{\beta}) = C_{\alpha}$ for each β of J. Finally, if C_1 , C_2 are two connected components of X, then C_1 , C_2 are closed and disjoint in X. By lemma 2, $f(C_1)$, $f(C_2)$ are disjoint

Note on a mapping of comrected components 83

component of Y. Hence there is one-to-one correspondence between the elements of I and the elements of J. In this note f is continuous closed mapping and f is not one-to-one mapping.

May. 30, 1958

Mathematical Department Liberal Arts and Science College Kyungpook University

-

•

•=

. **REFERENCES**

- [1] Topologie, P. Alexandroff and H. Hopf, Springer, Berlin, 1935.
- [2] Compact mapping, Edwin Halfer, Proceeding of the A. M. S. Vol. 8, No. 4, 1957. pp. 828-830.

•