THE INTERVAL TOPOLOGY OF
A LATTICE ORDERED GROUP

By Tae Ho Choe

Introduction. A group L is called a lattice ordered group,
(=l-group), when in L is defined a order a=b, preserved under the
group multilication:
| a<b implies ac<bc and ca<cb for all ¢ in L.
et L be a partly ordered. In L, we write

M(x)={a :x <a}, L(x)={a:a<x} for each x= L.
The interval topology [ 1] is that topology generated by taking all of the
sets {M(x), L(x):x=L}, as a subbasis for the closed sets.

E. S. Northam [ 2] has proved, using an example, that a I-group

need not to be a topological group in it's interval topology, which
solves problem 104 of Birkhoff {1 ].

In this paper, using the necessary and sufficient condition that a
lattice be Hautdorff in it's interval topology, which is proved by R. M.
Bare [ 3], we shall prove any Il-group which satisfies the chain condit-~
ion and not a cyclic group i1s not 4 topological group in it's interval
topology. This theorem supplies an other answer to problem 104 of
Birkhoff [ 1 ].

And using the necessary and sufficient condition for an element to be
isolated in the interval topology of a lattice which i1s proved by E. S.
Northam, we prove that l-group 1is discrete in the interval topology if
and only if the Il-group is isomorphic with the ordered group of all
integers under addition. |

In§ 2, we shall prove a l-group is complete if and only if every closed
interval [e, ¥ ] is compact in it's interval topology. Finally, in §3, we
add that natural mépping from l-group L to the factor l-group L/H is

a closed mapping in their interval topologies, where H is an l-ideal of
L.
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§1. Two Theorems.

Let L be a partly ordered set. An element of L is minimal element
1f it has no proper predecessor.

In a l-group L, an element @ is called positive if @>>e, where the
element ¢ is an identity of group L. The set of all positive element of
L is called positive cone which will always be denoted P.

Let us say that l-group is satisfying chain condition, if every non-void

set of positive element includes a minimal member.

The following theorems are due to G.Birkhoff [11] and R.M.Bare [3],
respectively

{ THEOREM. G Let L be l-group which satisfies ihe chain
condition. Then L 1s commuialive, and each wnon-zero element of L
can be expressed uniquely as a product of integral poweres of a fintle
number of distinct primes. Such a product ts posz’iz’z}e if end only 1if
all powers are positive.

TTHEOREM. R] A necessary cnd sufficient that the interval
topology of a lattice L be Hausdorff is that, for every p:-ir of elements
a, bin L with «<b, there exist finite non-void subseis A and B (depe-
nding on a, b) wn L such that both of the following conditions are
satisfied

(1) A={ x . alx<b or asx or b¥x}, B={y: :a<y<bor aty or
byt . '

(i1) (M(x))sen » (L(¥))ver 1is a covering of L.

Let L be a l-group which satisfies the chain condition. We suppose
that L be Hausdorff in it's interval topology. Then, by Theorem R,
there exist finite non-void subset A and B -such that (i) and (ii) hold.
And, by Theorem G, each element of A and B can be expressed uniquely
as a product of integral powers of a f{inite number of distinct primes.
Let # be the greatest integer of their all integral and zero powers, and
m be the least integer of them. And we have #+1>0, and m—1<0.

Now -consider the element p"*'¢g™' for some prime elements p, g if
exist. Since L is a group, this element is in L. However, the element
p" g™ is incomparable with any element of A and B. For, if the
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element is comparble for some element of A or B, say p"t'¢"'>x, and
if the primes p and ¢ are contained to primes 0f x. Then the element
p"Higm—t x™' is a positive. However, the power of p is positive, and
that of ¢ is negative, which is contrary. Similarly, we see easily that
for any case happen the contradiction. Therefore, the element p"*'g™™"
is not in the covering {ii) of L.

Hence we have the following,

TLEMMA 1’ Let L be al-group which satisfies the chain condition
and not a cyclic group. Then L ts not to be Hausdorff in it s interval

topology.
Moreover, we have

"TTHEOREM 1 | Under the hypoiheses of Lemma 1, l-group L 1s
not 1o be a topological group in it's interval topology.
[PROOF ] If the l-group L is to be a topological group. Since the

interval topology is T,-space and a topological group 1Is regular, the
interval topology must be Hausdorif, which is contrary to the Lemma 1.

E. S. Northam [ 2] proved the following

[THEOREM. N ] A mnecessary and sufficieni condition for an
element x fto be isolated in the interval topology of a lallice L is that

(@) x covers a finile number of elements and every element under

x 1S under an element covered by x.

(b) x s covered by a finite number of elements and every element
over x tS over an element which covers x.

(c¢) x belongs to a finite separating sei of L in which no other

wmember 1s comparable with x.

Now we apply the Theorem. N to the following theorem.

T THEOREM 2] A l-group L be discrete in ttl's interval topology
1f and only if L is isomorphic with the ordered group of all integers
under addiiion.

[PROOF] Let L be discrete. By Theorem N, there are a finite
number of primes and a finite separating set of L, since an identity is
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an isolated point of L.

From ([6], Theorm 3), it follows that L .is a free abelian group
with the primes as generators and every element of the-finite serarating
set 1s expressed uniquely as a product of integral powers of the finite
number of distinct generators. Let # be the greatest integer of their all
integral and zero powers, and m be the least integer of them. Similarly;
as was done Theorem 1, we can see easily that the element p""'g" for
some genertors p, g if exist, is incomparable with any element of the
finite separating set of L, which is unreasonable. Hence L is a cyclic
grouD. And hence, L is isomorphic with the ordered group of all
integers under addition.

The converse is obvious.

§ 2. Completeness of 1-group.

A l-group is called complete if and only if every non-void bounded
set has a g.1.b. and a l.u.b.

[LEMMA 2] A l-group ts to be combdlete if and only if any non-
void bounded subset of the positive cone P hcs a g£.1.0.

TPROOF] Let M be a non-void bounded subset of L, and the element
z be alower bound of M : z<a for any element a of M. i.e., ez 'a
for any element ¢ of M. Therefore, the set 27 'M=4{ 2='a:aesM } is a
non-void bounded subset of the positive cone P. Since in P, any non-
voild bounded subset has a g.l.b., the set 27'M has a g.l.b. x.
-Then the element 2x 1s a g.l.b. of M. For, from z2"'a>x, we have
a=>zx for any element ¢ of M. Let y be a lower bound of M, then
z~'y<z"'a for any element z7'a of 27'M. Therefore, we have z27'y<x,
i.e., y=<zx. Hence, any non-void bcunded subset of L has a g.l.b.
Now consider the set M™'={ a™ : qe M }. Since M is a non-void boun-
ded, M™' is non-void bounded. And let the element » be a g.1.b. of
M=, Then the element v~ is a l.u.b. of M.
For, from v=<¢™', we have v™'=a for any element a of M. Let u
be an upper bound of M, then #*<a™ for any element a=' of M™
Therefore, we have ™ '<v, i.e., it_}:-zf"'.
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Now, we prove the following Lemma in a manner parallel to ([4],
Theorem 1). |

"LEMMA 3]  Any wnon-void bom;zded'subsei of the poilive cone has

a g.1.b. if and only if for each xeP, the closed interval [e, %]
be compact in the interval topology of P.

[PROOF ] The sufficiency is evident from ([4] Theorem 1). Let
{xe: €A } and { x3 . 8=B | are subset of [ ¢, x| such that
| F={M, ecA} U {L(xs): BB }.
is a non-void collection with finite intersection property. If B is void
set, then x= NF. If B is not void, we have x,<x; for each €A and
B = B by the finite intersection property. And since { x5 : BB } is a non
-void bounded, it has a g.l.b. x, Then x,<x, for each @« € A. Clearly,
xoe [ F. .

[LEMMA 4] The closed interval e, x1is compact in ilhe inlerval
topology of L if and only if it is compact in the interval totology of the
positive cone P. . '

(PROOF ] Let {x, : A} and { xs : 8= B} are subsets of [ ¢, x1. And

F={M(x,) oA} U{L(xs) . BB}
is a non-void collection with finite intersection property such that F has
a non-void intersection in L, say x,= [NF. Then we have e<X,<X,=Xp
for each we A and 8< B. Therefore, xoe L(xs)[1 P for each B 5.
The sufficiency is immediate.

Hence we have

[ THEOREM 3] Fot [-g7oup L 1o be complele, 1i 1s necessary and
suffictent that, for each x= P, [e, x] be compact in the inierval topo-
logy.

§ 3. Natural Mapping.

By an l-ideal of a l-group L is meant a normal subgroup of L which
contains with any a and b, also all x {vith aNb<x=<a\Jb.

Already, we know that the factor l-group L/H forms also a I-group
if one defines Hx\UHy-Hxvy, HxNHy HxNy and Hx-Hy=Hzx-¥,
and the natural mapping from L to L/H is a lattice homomorphism,
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where, Hx is a residue class containing x of L/H.

[LEMMA 5] Let L be a l-group and H be an l-ideal. Then
M(Hx) =H(M(x)), L(Hx)=H(L(x)) in the factor l-group L|H.

Where, M(Hx)={Hy : Hx<Hy in L/H}, H Mx)={Hy ' ye M(x)}
L(Hx)=1{Hy : Hx=Hy}, H(L(x))={Hy . y=L(x)}

| PROOF ] If Hx<Hy, then Hxny=HxNHy=Hzx. Therefore,
xNy=n-x for some he H, i.e., x<h'y, hence IyeM(x), 1.e.,
HyeH M(x)). Conversely, if Hye H(M(x)), we have Hx<Hyvy, i.e.,
Hy=sM(Hx", since x<y and the natural mapping is a lattice homomor-
phism. And dually.

[ THEOREM 4 | The natitml mapping from l-group L to factor
[-group LIH s a closed mapping in their interval topologies.

[PROOF ] Let S be any closed subset of L in interval topology. It
must be the union of a finite number of closed subbasis, hence there

are two finite subsets A4, B in L such that
S:( L':EAM(:I:>) U( U:’JEBL<y >>-
H(S)=H [(U.eaM{x)) U UsesL ¥))]
= U.ead(M{x))JUC UsesH(L(Yy))]
= U,eaM(Hx)JUC UvepL(Hy)] by Lemma 5.
Therefore, H(S) is a closed subset in interval topology of L/H.
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