NOTE ON WEAK TOPOLOGY OF BANACH SPACE

٦.

By Mi-Soo Pae

Let X is a Banach space and X^{*} is a conjugate space of X. Then X^{*}

is a Banach space, too. The Banach space X is to be weakly compact if and only if there is at least one sequence $\{x_n\}$ of points in S, converging to a point x of X, for an arbitrary infnite subset S of X. [1] And in Banach space the weakly compactness has the same meaning with compactness for weak topology in Banach space. [2] Now we have some definitions on weak topological space X^{*}. (The weak topology of X^{*} is the weak topology as functionals in X^{*}.) X^{*} has weak ε -net it means there exist finite points f_1, f_2, \dots, f_n of X^{*} such that for each $f \in X^*$ there is at least one f_i satisfying the following: $|f(x)-f_i(x)| < \varepsilon$ for all $x \in X$.

X* is separable for weak topology if and only if there is a countable subset S* of X and closure of S* for weak topology is X*. PROPOSITION 1. X* is weakly compact then X* has ε -net for arbitrary $\varepsilon > 0$.

Proof. If on the contrary there is same $\varepsilon > 0$ for which X* has not weak ε -net. So that there is an infinite points sequence $\{f_n\}$ $(n=1, 2, \dots)$ of X*, and satisfies.

(1) $|f_i(x)-f_j(x)| \ge (i \ne j)$, for some $x \in X$. { f_n } is an infinite points set of X* and X* is weakly compact then there is an element 9 of X such that g_m converges to 9 weakly as functional, and { g_m } is subsequence of { f_n }.

Then for arbitrary $\delta > 0$ there is an integer n_o such that

 $|g(x)-g_m(x)| < \delta$ for all $m > n_o$, $x \in X$

In the sequence of real numbers, $g_m(x)$ converges to g(x) implies $\{g_m(x)\}$ $(m > n_o)$ is a Cauchy sequence. So we have the following: for $\varepsilon > 0$, $m > n_o$, $l > n_o$

 $|g_m(x)-g_i(x)| < \varepsilon$ for all $x \in X$.

Note on weak topology of Banach space 66

Since $\{g_n\}$ was subsequence of $\{f_n\}$ then we can find out $f_i, f_j \in \{f_n\}$ such that $f_i = g_m, f_j = g_l$, and

 $|f_i(x)-f_i(x)| \leq \varepsilon$. (2)

(2) is contrary to (1). Hence for arbitrary $\varepsilon > 0$ X* has weak ε -net. PROPOSITION 2. X* is weakly compact then X* is set anable for weak topology.

Proof. From proposition 1, there is at least one weak ε – net correstonding to each $\varepsilon = \frac{1}{2^k}$ $(k=1,2,3,\dots)$. Let $\{f_n\}$ is the totality of these weak

e-nets. $\{f_n\}$ is a countable subset of X* And for arbitrary $f \in X^*$ there are f_{nk} (k=1, 2, 3,....) such that

 $|f(x) - f_{nk}(x)| < \frac{1}{2^k}$ for all $x \in X$.

So that

 $\lim_{k\to\infty} |f(x)-f_{nk}(x)|=0 \text{ for all } x\in \mathbf{X}.$

Then f_{nk} converges to f weakly as functional, if k appraoches to ∞ . Hence X* is separable for weak topology. Banach space X is separable for strong topology then the unit circle of X* is weakly compact. Referring proposition 2, X is separable for

strong topology then the unit circle of λ^* is separable for weak topology. We have the other condition X* to be separable for weak topology. From now in this paper, we assume that X^* is a Banach lattice. [3] P* is the totality of $f \in X^*$ such that $f \ge 0$, where the order of X* is defined by following formula: $f < \mathfrak{g} \longleftrightarrow f(x) < \mathfrak{g}(x) \quad \text{for all } x \in \mathbf{X}.$ **PROPOSTION 3.** F^* is separable for weak topology then X^* is separable for weak topology of λ^* . Proof. Since I^{*} was separable for weak topology, there is a countable subset Q^* of F^* such that for arbitrary $f \in F^*$ there exists a subsequence $\{f_n\}$ of Q^* :

 $|f_n(x) - f(x)| < \varepsilon$ for all $x \in X$,

1) We dente this term by $w - \lim_{k \to \infty} f_{\#} = f$.

Mi-Soo Pae 67

where ε is arbitrary positive number, $n > n_o$, and n_o is an integer depending on ε . Each $f \in X^*$ be represented uniquely as

$$f = f^+ + f^- = f^+ - (-f^-),$$

where

•

.

$$f^+=f\cap 0, \quad f^-=f\cap 0.$$

Then $f^+ \ge 0$, $f^- \le 0$ and $-j^- \ge 0$. So that f^+ , $-f^-$ belong to P*. And there is a subsequence $\{f_n\}$ of Q* such that

$$\underset{n\to\infty}{\alpha-lim} f_n=f^+,$$

and a subsequence $\{g_m\}$ of Q* such that

$$\underset{m\to\infty}{\omega-lim} g_m = -f^-.$$

 $\{f_n - g_m\}$ is a countable subset of X*, so we can put

 $\{f_n - g_m\} = \{h_i\}$

by suitable rearrangement. For arbitrary $\varepsilon > 0$, there is a number N such that for all m, n > N

$$\begin{aligned} |f_n(x) - g_m(x) - f^+(x) - (-f^-(x))| \\ \leq |f_n(x) - f^+(x)| + |-f^-(x) - g_m(x)| \\ < 2\varepsilon \qquad \qquad \text{for all } x \in X. \end{aligned}$$

There is some number M: for arbitrary i > M

$$|h_i(x) - f(x)| = |h_i(x) - f^+(x) - (-f^-(y))| < 2\varepsilon$$

for all $x \in X$.

Hence

$$\omega - \lim_{i \to \infty} h_i = f.$$

 $\{h_i\}$ is a subsequence of S*:

$$S^* = E\{j + g; j \in P^*, g \in -P^*\},\$$

where

$$-P = E\{-f; f \in P^*\}.$$

Then S* is a countable subset of X* and X* is separated by S* for weak topology of X*.

Sep. 20, 1958

•

Note on weak topology of Banach space

Department of Mathematics

Liberal Arts and Science College

Kyungpook University

S. 19

•

REFERENCES

[1] M. Mimura, Topological Analysis, (in Jaranese) Gendai-Sugaku Koza Vol. 12-B,

•

Kyoritshu.

[2] W. F. Eberlein, Weak compactness in Banach spaces I., Proc. Nat. Acad. Sci. U. S. A. 33, 1947.

•

-

[3] G. Birkhoff, Lattice theory, 1948.