AN ISOLATED POINT IN A PARTLY ORDERED SET WITH INTERVAL TOPOLOGY

By Tae Ho Choe

1. Introduction.

The problem of finding necessary and sufficient condition for an element of a complete lattice to be isolated in the interval topology posed by Birkhoff [$]]^{11}$. It has already been solved in the case that for an element x to be isolated to the lattice L itself in its interval topology by Northam [2], that is, the necessary and sufficient conditions are the followings:
(a) x covers a finite number of elements and every element under x is under an element covered by x.
(b) x is covered by a finite number of elements and every element over x is over an element which covers x.
(c) x belongs to a finite separeating set ${ }^{2)}$ of L in which no other member is comparable with x.

In this short paper, we shall find a necessary and sufficient conditions for an element of a partly ordered set P to be isolated to a subset M of P. And we shall give some Remarks which shows our conditions are equivalent to Notham's conditions (a), (b), (c) if the subset M ke P.

We here recollect some standard teim;. P is partly ordered if it is subject to a binary relation \leqq which is reflexive, antisymmetric, and transitive. In P, if neither $x \leqq y$ nor $y \leqq x$, then x and y are said to be incomparable and this is denoted by $x \neq y$. The interval topology for P is defined by taking as a sub-basis for the closed sets the class S of all

1) Number in brackets represent references listed at the end of the paper.
2) Northam Cefines a separating set for closed intervals in the following way. Let x anci y be two elements in a partjally orcered set, with $x<y$. A set of elements (a_{i}) is called a separating set for the closec interval $[x, y]$ if $x<a_{i}<y$ all i, and every e] ment in $[\mathrm{x}, \mathrm{y}]$ is comparable with at least one a_{i}. This requires that intervals containig less thar three elencents are said to be separated ty the empty set.
sets (half intervals) of the form $\{x: x \leqq a\}$ and $\{x: a \leqq x\}$. It is convenient to introduce the notation $L(a)$ and $M(a)$ to denote, respectively, the proceeding half intervals. By a covering of an arbitrary set A, we mean a collection of subsets of P whose union includes A. we let A^{\prime} denote the complement of set A.

2. The isolated point in the interval topology

The following Lemma is obvious.
[LEMMA] In a topological space P, if $F=\left\{B_{c}: B_{\alpha} \subseteq P\right\}$ is a base of open sets then $F^{\prime}=\left\{{B^{\alpha}}^{\prime}: B_{\alpha} \in F\right\}$ is a base of closed sets.
[THEOREM] A necessary and sufficient condition for an element a of a partly ordered set P to be isolated to subset M in the interval topology is that for the element a there exist the finite subsets A and B such that
(i) $A=\{x: x \# a$ or $x>a\}, B=\{y: y \# a$ or $y<a\}$
(ii) $(M(x))_{x \in A},(L(y))_{y \in B}$ are covering of $M-a$
[PROOF] At first we hall show that the conditions (i), (ii) are necessary. If a is isolated to M, then $a \overline{M-a}$.
And we can find a neighbourhood $\mathrm{V}(a)$ of a that $\mathrm{V}(a) \cap[M-a]=0$. Since $V(a)$ is an open set, there exist basic open sets U_{B} such that $V(\mathrm{a})=U_{\beta} U_{B}$, where, $U_{\beta} \cap[M-a]=0$ for all β.
Therefore, there exist at least one basic open set U_{β} containing a.
Since $\mathrm{U}_{\beta}^{\prime}$ is a basic closed set by Lemma, U_{β}^{\prime} must be the union of a finite number of sub-basic of closed set.
Hence there are two finite subsets A, B of P such that

$$
U_{\beta}^{\prime}=\left[U_{x \in A} M(x)\right] \cup\left[U_{y \in B} L(y)\right]
$$

which includes $\mathrm{M}-a$ because $\mathrm{U}_{\beta} \cap[\mathrm{M}-a]=0$.
If $x \leqq a$ and $x \in A$, then $a \in M(x)$ which is contrary.
Hence any element x of A is either $x \geqslant a$ or $x>a$. Similarly, we have any element y of B is either $y \# a$ or $y<a$.
we now consider the suffciency. In an interval topology, $\overline{M-a}$ is the intersection of

$$
\Gamma=\bigcap_{\alpha}\left\{F_{\alpha}: F_{\alpha} \text { is closed subset such that } M-a \subset F_{\alpha} \subset P\right\}
$$

On the other hand, the subset $\left[U_{x \in A} M(x)\right] \cup\left[U_{y_{\varepsilon} B} L(y)\right]$ is a closed subset of P and includes $M-a$. Threfore,

$$
\left[U_{x \in A} M(x)\right] \cup\left[\bigcup_{y \in B} L(y)\right] \in \Gamma
$$

while $a \notin\left[U_{x \in A} M(x)\right] \cup\left[U_{y \in B} L(y)\right]$, infact, if $a \in M(x$ for some $x \in A$ then $a \geqq x$, which is contrary, and similarly if $a \in L(y)$ for some $y \in B$ then $a \leqq y$, which is also contrary.
Hence $a \neq \overline{M-a}$.
[REMARKS] In particular case of $M=P$, our conditions are equivalent to Northam's conditions (a), (b), (c). For, there exist a finite number of maximal elements of $\{x: a>x\}$ in B, and a finite number of minimal elements in A, since $(M(x))_{x \in A},(L(y))_{y \in B}$ are a covering of $P-a$.

Therefore, the conditions (a) and (b) hold, and the condition (c) easily hold, too. And it is easy to see the converse if $M P$.

Finally, we here give as example that the conditions (a), (b) are unnecessary for element a of M to be isolated point of $M(\neq P)$. Let P be the topological space to all real numbers and M be the subset

$$
\{0, x: 1<x, \text { or }-1>x\} \text { of } P .
$$

Then zero is an isloated point of M since $M(1) \cup L(-1)$ includes $M-0$. However, there is any element in M neither covering zero nor being covered by zero.

May 20. 1958
Defartment of mathematics
Liberal Art and Science Collage
Kyungpook Univercity

REFERENCES

[1] G. Birkhoff, Lattice Theory, rev. ed., New York (1948)
[2] E. S. Northam, The Interval Tofology of a Lattice, Proc. Amer. Math. Soc. 4 (1953)

