AN ISOLATED POINT IN A PARTLY ORDERED SET WITH INTERVAL TOPOLOGY

By Tae Ho Choe

•

1. Introduction.

The problem of finding necessary and sufficient condition for an element of a complete lattice to be isolated in the interval topology posed by Birkhoff $[1]^{0}$. It has already been solved in the case that for an element x to be isolated to the lattice L itself in it s interval topology by Northam [2], that is, the necessary and sufficient conditions are the followings:

(a) x covers a finite number of elements and every element under xis under an element covered by x.

(b) x is covered by a finite number of elements and every element over x is over an element which (overs x.

(c) x belongs to a finite separeating set²⁾ of L in which no other member is comparable with x.

In this short paper, we shall find a necessary and sufficient conditions

for an element of a partly ordered set P to be isolated to a subset M of P. And we shall give some Remarks which shows our conditions are equivalent to Notham's conditions (a), (b), (c) if the subset M le P. We here recollect some standard terms. P is partly ordered if it is subject to a binary relation \leq which is reflexive, antisymmetric, and transitive. In P, if neither $x \leq y$ nor $y \leq x$, then x and y are said to be incomparable and this is denoted by $x \neq y$. The interval topology for P is defined by taking as a sub-basis for the closed sets the class S of all

1) Number in brackets represent references listed at the end of the paper.

2) Northam defines a separating set for closed intervals in the following way. Let $\mathbf{x} \in \mathbb{R}$ and y be two elements in a partially ordered set, with x < y. A set of elements (a_i) is called a separating set for the closed interval [x, y] if $x < a_i < y$ all *i*, and every el ment in [x, y] is comparable with at least one a;. This requires that intervals containing less than three elements are said to be separated by the empty set.

58 Tae Ho Choe

sets (half intervals) of the form $\{x : x \leq a\}$ and $\{x : a \leq x\}$. It is convenient to introduce the notation L(a) and M(a) to denote, respectively, the proceeding half intervals. By a *covering* of an arbitrary set A, we mean a collection of subsets of P whose union includes A. we let A' denote the complement of set A.

2. The isolated point in the interval topology

The following Lemma is obvious.

[LEMMA] In a topological space P, if $F = \{B_{\alpha} : B_{\alpha} \subseteq P\}$ is a base of open sets then $F' = \{B'_{\alpha} : B_{\alpha} \in F\}$ is a base of closed sets.

[THEOREM] A necessary and sufficient condition for an element a of a partly ordered set P to be isolated to subset M in the interval topology is that for the element a there exist the finite subsets A and B such that

(i) $A = \{x : x \neq a \text{ or } x > a\}, B = \{y : y \neq a \text{ or } y < a\}$ (ii) $(M(x))_{x \in A}$, $(L(y))_{y \in B}$ are covering of M-aAt first we hall show that the conditions (i), (ii) are [PROOF] necessary. If a is isolated to M, then $a \notin M - a$. And we can find a neighbourhood V(a) of a that $V(a) \cap [M-a] = 0$. Since V(a) is an open set, there exist basic open sets U_B such that $V(a) = \bigcup_{\beta} U_{\beta}$, where, $U_{\beta} \cap [M-a] = 0$ for all β . Therefore, there exist at least one basic open set U_{β} containing a. Since U'_{B} is a basic closed set by Lemma, U'_{B} must be the union of a finite number of sub-basic of closed set. Hence there are two finite subsets A, B of P such that $U'_{\mathsf{B}} = \left[\bigcup_{x \in A} M(x) \right] \bigcup \left[\bigcup_{y \in B} L(y) \right]$ which includes M-a because $U_{\beta} \cap [M-a] = 0$. If $x \leq a$ and $x \in A$, then $a \in M(x)$ which is contrary. Hence any element x of A is either $x \neq a$ or x > a. Similarly, we have any element y of B is either y # a or y < a. we now consider the sufficiency. In an interval topology, M-a is the intersection of

 $\Gamma = \bigcap \{F_{\alpha} : F_{\alpha} \text{ is closed subset such that } M - a \subset F_{\alpha} \subset P\}$.

 α

59 Isolated point in a partly ordered set

On the other hand, the subset $[\bigcup_{x \in A} M(x)] \cup [\bigcup_{y \in B} L(y)]$ is a closed subset of P and includes M-a. Threfore,

 $[\bigcup_{x \in A} M(x)] \bigcup [\bigcup_{y \in B} L(y)] \in \Gamma$

while $a \notin [\bigcup_{x \in A} M(x)] \cup [\bigcup_{y \in B} L(y)]$, infact, if $a \in M(x)$ for some $x \in A$ then $a \ge x$, which is contrary, and similarly if $a \in L(y)$ for some $y \in B$ then $a \leq y$, which is also contrary.

Hence $a \notin M - a$.

In particular case of M=P, our conditions are [REMARKS] equivalent to Northam's conditions (a), (b), (c). For, there exist a finite number of maximal elements of $\{x : a > x\}$ in B, and a finite number of minimal elements in A, since $(M(x))_{x \in A}$, $(L(y))_{y \in B}$ are a covering of P-a.

Therefore, the conditions (a) and (b) hold, and the condition (c) easily hold, too. And it is easy to see the converse if M P.

Finally, we here give as example that the conditions (a), (b) are unnecessary for element a of M to be isolated point of M ($\neq P$). Let P be the topological space to all real numbers and M be the subset

$$\{0, x: 1 < x, or -1 > x\}$$
 of P.

Then zero is an isloated point of M since $M(1) \cup L(-1)$ includes M-0.

However, there is any element in M neither covering zero nor being covered by zero.

> May 20. 1958 Department of mathematics Liberal Art and Science Collage Kyungpook Univercity

> > i

REFERENCES

[1] G. Birkhoff, Lattice Theory, rev. ed., New York (1948) [2] E. S. Northam, The Interval Topology of a Lattice, Proc. Amer. Math. Soc. 4 (1953)