Functional Disturbances Through the Retinal Pigment Reaction of the Automatic Nervous System of Tadpoles Developed under Various Visible Rays

망막반응으로 본 각종파장가시광선조사하에서 발육한 과두(올챙이)의 식물신경계기능변조에 관하여

  • 주인호 (수도의과대학 위생예방학교실)
  • Published : 1958.12.01

Abstract

Since Kesser first described in 1934 the functional change of the autonomic nervous system caused by certain visible rays many researchers have unanimously approved that animals flashed with a red visible ray develop parasympathicotony while those flashed with a blue visible ray develop sympathicotony. On the other hand through studies made by our colleagues it is now well known that the inner-movement of the retinal pigments of frogs is stimulated in sympathicotony and is in reverse inhibited in parasimpathicotony. It is almost evident that the mechanism by which the inner-movement of the retinal pigments is due to sympathicotony derived from the excessive secretion of adrenalin. In addition , through may recent experiments on the pharmacological action of various medicines on the retinal pigments reaction of tadpoles , ranging from the excessive secretion of adrenalin. In addition , through my recent experiments on the pharmacologtical action of various medicines on the retinal pigments reaction of tadploes, raging from every developmental stage , Ifound that the movement of the retinal pigments by adrenalin is predominant in the earlier developmental stages of taopoles around 11 mm of body length, whereas other medicines fail to give any responce to the retinal pigments in such an earlier stage. When tadpoles grown to body length of 15-16m the retinal pigments move to the complete light position while kept in adrenalin solution. Based on these facts it might be well to consider that if tadpoles were grown under the visible rays for a given period, they might show a functional change of the autonomic nervous system and thereby cause of certain change in the physciological phases of the retinal reaction. Experiments were undertaken to find this matter and also to discover the simultaneous effects of the visible radiations on the developmental process of tadpoles. The results summarized as follows ; 1. The longest wave of visible rav has an effective reaction on the growth of body length of taopoles, while the shortest wave of visible ray causes the same for the metamorphoric differentiation of tadpoles. 2. When keeping two groups of tadpoles the first group of 15 mm body length grown for the period of one week and the latter group of 20 mm body length grown for two weeks under the various visible rays. swimming in adrenalin solution, the inner-movement of the retinal pigment occurs in both groups. The movement of pigments of the first group is accelerated in a sequence of blue ray \ulcorner green ray > brown ray> red ray, and that of the latter group is also accelerated in a sequence of blue ray>green ray > brown ray and red ray. 3. When keeping tow groups of tadpoles, the first group of 20 mm body length grown for the period of two weeks, the latter group of 25 m body length grown for three wheeks, under the various visible rays in sunlight, the inner-movement of the retinal pigments occurs in both groups. The movement of pigments of the first group is accelerated in a sequence of blue ray> green ray>brown ray and red ray, and that of the latter group is also accelerated in a sequence of blue ray > brow ray>red ray. 4. In order words, there facts manifest that tadpoles grown under the various visible rays reveal functional disturbances of the autonomic nervous system, at the time of 15 mm body length by adrenalin solution, which is a unique indicator illustrating the status of sympathicotony, and at the time of 20 mm body length by sunlight. This means that the longest visible ray cause sympathicotony, while the shortest visible ray causes parasympathicotony.

Keywords