새싹 레벨을 통한 에너지 절감 유도 시스템

윤윤지¹, 박규리², 한지원³, 이현주⁴, 유상오⁵

^{1.2}덕성여자대학교 컴퓨터공학전공 학부생

³덕성여자대학교 경영학전공 학부생

⁴덕성여자대학교 소프트웨어전공 학부생

⁵(주)우리카드

yunyunji1017@gmail.com, inglifestora@naver.com, jiwonee@duksung.ac.kr, greenapple5657@gmail.com, SangOh.Yoo@gmail.com

Energy Saving Induction System Through Sprout Level

Yun-Ji Yun¹, Gyu-ri Park², Ji-Won Han³, Hyeon-Joo Lee⁴ Sang-Oh Yoo⁵

^{1, 2}Dept. of Computer Engineering, Duksung Women's University ³Dept. of Business Administration, Duksung Women's University ⁴Dept. of Software, Duksung Women's University ⁵Corp. Wooricard

요 약

본 논문은 에너지 자원에 대한 소비 부담 문제를 해결하기 위해 IoT 기반의 스마트홈 플랫폼 '엣지(E-dge)'를 제안한다. 엣지(E-dge)는 아두이노와 ChatGPT API를 활용해 사용자의 환경과 에너지 사용 패턴을 분석하고, 맞춤형 절약 솔루션을 제공하며 원격으로 가전 기기를 제어한다. 더불어 새싹레벨 시스템으로 사용자의 에너지 절감을 유도한다.

1. 서론

1.1 연구의 배경과 문제점

에너지 자원에 대한 소비자들의 부담이 커지며 전력 제어에 대한 수요가 증가하였다. 통계청의 국 가통계포털에 따르면, 전기의 소비자 물가지수가 2019년 대비 2023년 약 30% 오른 것으로 나타났다 [1]. 이러한 상황에서 에너지 절약을 목표로 다양한 스마트홈 플랫폼이 개발되었으나, 소수의 가전 기기 만 사용하기에 실제 스마트홈이라 부를 수 있는 IoT 장비를 경험하지 못하고 있다[2]. 스마트홈에 대한 소극적인 경험은 사용자의 실질적인 참여를 유도 하는 데 어려움을 발생시킨다.

따라서 사용자의 적극적인 참여를 유도함과 동시에 에너지 자원의 효율적인 관리를 도울 수 있는 플랫폼이 필요하다.

1.2 해결책 제시

본 논문에서는 사용자의 에너지 사용 패턴을 분석하여 효율적으로 에너지를 절약할 수 있는 애플리케이션을 소개한다. 해당 애플리케이션은 센서를 통해 전력량을 수집하여 에너지 사용 패턴을 분석하고 개인 맞춤형 에너지 절약 시나리오를 제시한다.

2. 본론

2.1 사용자 주변 환경 측정

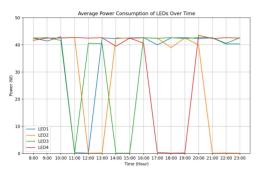
본 프로젝트는 사용자 주변 환경의 온도, 습도, 미세먼지 농도, 광조도 수치를 측정한다. 이를 위해 ESP32-C3, DHT11(온습도), GP2Y1014AU(미세먼지), SZH-SSBH-011(광조도) 모듈을 사용한다.

2.2 실시간 전력 측정 및 목표 전력량 비교

ACS712 전류 센서를 사용하여 가전 기기별 실시간 전력 사용량을 측정하고, 요금 조회 기능을 제공한다. 이를 통해 사용자는 실시간 전력 사용량과이에 따른 예상 비용을 모니터링한다.

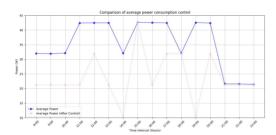
2.3 AI를 통한 최적의 솔루션 도출

ChatGPT 4 API를 활용하여, 사용자의 주변 환경 수치와 가전 기기별 전력 소비량을 기반으로 사용자 맞춤 에너지 절감 솔루션을 제공한다. 이를 통해 사용자는 에너지를 효율적으로 소비할 수 있게된다.


2.4 앱을 통한 가전 기기 원격제어

사용자는 전자 기기를 등록하고, 전원을 원격 제어할 수 있다. 이는 릴레이 모듈을 통해 LED 전구를 제어하는 방식으로 구현하였다. LED는 4개로 구

성되어 있으며, 각각 에어컨, 제습기, 공기청정기, 조명을 나타낸다.


2.5 환경 수치에 따른 가전 기기 자동 제어

<표 1> 사용자 환경 수치에 따른 전력 변화

<표 1>은 8시부터 23시까지 가전 기기가 자동으로 제어됐을 때 전력량을 측정한 그래프이다. 아두이노 모듈이 사용자 주변 환경 수치를 수집하면 그결과에 따라 가전 기기를 자동으로 제어한다. 온도는 24°C 이상, 습도는 60% 이상[3], 미세먼지 농도는 50μg/m³ 이상[4], 광조도는 2000lux 이하[5]이면 관련 가전기기가 ON 된다.

<표 2> 서비스 사용 전후 사용 전력량 비교

<표 2>는 서비스를 사용하기 전과 후로 나누어 15시간 동안 사용된 전력량을 비교한 것이다. 사용 전에는 불필요한 전력 소비가 발생한 것으로 나타났 으나, 사용 후에는 환경 조건에 따라 자동으로 전원 이 제어되므로 전력 소비가 현저히 감소한 것을 확 인할 수 있다.

2.6 새싹 레벨 시스템을 통한 사용자 참여 유도

(그림 1) 새싹 레벨 시스템 UI와 서비스 체험 후 진행한 조사의 사용자 응답.

2024년 8월 30일부터 9월 8일까지 진행한 설문 조사에 따르면 응답자 56명 중 30명이 본 프로젝트 의 서비스가 에너지 절감에 도움이 된다고 응답했으 며, 그 이유가 새싹 레벨 시스템 때문이라고 답했다.

새싹 레벨 시스템은 사용자의 실제 전력량이 목표 전력량을 달성하면 레벨이 증가하는 기능으로, 레벨에 따라 새싹이 성장하는 UI를 제공함으로써 사용자의 성취감을 자극하여 에너지 절감 동기를 유 발한다.

3. 결론

본 프로젝트는 실제 전력량을 측정하고, 환경 데이터를 수집하여 맞춤 에너지 절약 솔루션을 제공한다. 이를 통해 사용자는 효율적으로 에너지를 관리하고 에너지 절감에 기여할 수 있다.

그러나 ChatGPT 4 API를 활용하여 사용자 데이터에 기반한 절약 솔루션을 제공하고 있다는 한계가존재한다. 향후에는 자체 개발한 인공지능을 바탕으로 보다 포괄적이고 세밀한 절약 솔루션을 제공할예정이다. 또한 표 1, 2는 계절, 누진세, 다자녀 가구에 대한 할인 등의 요소를 고려하지 않았으며, 일반주택용 전압을 기준으로 측정한 결과이므로 다양한환경적 요인을 반영한 추가적인 연구가 필요하다.

※ 본 논문은 과학기술정보통신부 대학디지털교육역 량강화 사업의 지원을 통해 수행한 ICT멘토링 프로 젝트 결과물입니다.

참고문헌

[1] 통계청,「소비자물가조사」, 2024.08, 2024.09.11, 품목별 소비자물가지수(품목성질별: 2020=100).

[2] 윤장희 and 연명흠. (2021). 헤비유저 심층 인터 뷰를 통해 본 스마트 홈 IoT 시스템의 사용 특성 및 성향 도출 - 스마트싱스 이용자를 중심으로. 디 자인학연구, 34(4), 207-223.

[3] 맹민정. (2017). 국내 기후특성과 공동주택 에너 지절약 설계기준을 고려한 난방도일 균형점온도의 제안 [석사학위논문, 성균관대학교].

http://www.riss.kr/link?id=T14441111

[4] 조동현, 이동락, 이학수. (2020-06-17). 대규모 복합시설의 미세먼지 저감설비 적용 설계사례. 대한설비공학회 학술발표대회논문집, 강원.

[5] 김수길, 이진우, 지철근. 에너지절약을 위한 조도 기준 설정에 관한 연구. 한국조명·전기설비학회 학술대회논문집.