
ACK 2024 학술발표대회 논문집 (31권 2호)

Challenges and Future Directions for Large Language

Models in Source Code Vulnerability Detection

윤수빈 1, 김현준 1, 백윤흥 1
1서울대학교 전기정보공학부, 반도체공동연구소

subyun@sor.snu.ac.kr, hjkim@sor.snu.ac.kr, ypaek@snu.ac.kr

Challenges and Future Directions for Large Language

Models in Source Code Vulnerability Detection

Subin Yun1, Hyunjun Kim1, Yunheung Paek1
1Dept. of Electrical and Computer Engineering and Inter-University Semiconductor Research Center,

Seoul National University

Abstract

Detecting vulnerabilities in source code is essential for maintaining software security, but traditional methods

like static and dynamic analysis often struggle with the complexity of modern software systems. Large Language

Models (LLMs), such as GPT-4, have emerged as promising tools due to their ability to learn programming

language patterns from extensive datasets. However, their application in vulnerability detection faces significant

hurdles. This paper explores the key challenges limiting the effectiveness of LLMs in this domain, including

limited understanding of code context, scarcity of high-quality training data, accuracy and reliability issues,

constrained context windows, and lack of interpretability. We analyze how these factors impede the models' ability

to detect complex vulnerabilities and discuss their implications for security-critical applications. To address these

challenges, we propose several directions for improvement: developing specialized and diverse datasets,

integrating LLMs with traditional static analysis tools, enhancing model architectures for better code

comprehension, fostering collaboration between AI systems and human experts, and improving the interpretability

of model outputs. By pursuing these strategies, we aim to enhance the capabilities of LLMs in vulnerability

detection, contributing to the development of more secure and robust software systems.

1. Introduction

As software systems become increasingly integral to

modern society, detecting and preventing vulnerabilities in

source code has become critical. Software vulnerabilities can

lead to malicious attacks, causing significant economic losses

and posing severe security threats. Traditional vulnerability

detection techniques, such as static and dynamic analysis,

have been effective to some extent. However, the complexity

and diversity of newly emerging vulnerabilities make it

challenging for these methods to keep pace. The rise of

sophisticated attack vectors necessitates advanced tools

capable of deeper code understanding and analysis.

Large Language Models (LLMs), like GPT-4, have shown

remarkable capabilities in natural language processing, code

generation, and code analysis. Trained on vast datasets

containing both natural language and programming code,

these models have learned patterns and structures inherent in

programming languages. Their ability to generalize across

tasks makes them promising tools for code understanding

and analysis. However, applying LLMs to source code

vulnerability detection remains in its infancy, and several

challenges limit their effectiveness.

This paper explores the challenges faced by LLMs in

source code vulnerability detection, discusses their

limitations, and proposes directions for improvement to

enhance their performance in this critical area.

2. Related Work

LLMs have been applied to various code-related tasks,

including code generation, completion, and summarization.

Models like GPT-4 have demonstrated proficiency in

generating syntactically correct code snippets and providing

natural language explanations for code segments. These

successes stem from training on extensive datasets

containing both natural language and code, enabling them to

learn programming language patterns.

Traditional methods for source code vulnerability detection

rely on rule-based systems and classical machine learning

techniques. Static analysis tools use predefined rules to

identify potential vulnerabilities but often produce numerous

false positives and struggle with unknown vulnerability

patterns. Dynamic analysis involves executing code to find

vulnerabilities but is resource-intensive and may not cover all

execution paths.

Recent approaches have incorporated machine learning to

improve detection capabilities. Techniques involving support

- 760 -

ACK 2024 학술발표대회 논문집 (31권 2호)

vector machines, decision trees, and neural networks are

trained on labeled datasets to predict vulnerabilities.

However, these methods often require extensive feature

engineering and may not generalize well across different

programming languages or vulnerability types.

Li et al. [1] introduced VulDeePecker, a deep learning-

based system specifically designed for vulnerability detection.

VulDeePecker employs bi-directional Long Short-Term

Memory (LSTM) networks to learn from manually extracted

code gadgets associated with vulnerabilities, focusing on

domain-specific model design. While VulDeePecker

demonstrated promising results in detecting vulnerabilities

without extensive feature engineering, it has certain

limitations. One significant limitation is that VulDeePecker

primarily accommodates data flow analysis (i.e., data

dependency) but does not incorporate control flow analysis

(i.e., control dependency), potentially missing vulnerabilities

that depend on the control structures within the code. This

limitation suggests that, although deep learning approaches

like VulDeePecker have advanced vulnerability detection,

challenges remain in achieving comprehensive solutions. The

need for models that can handle both data flow and control

flow analyses underscores the importance of exploring more

versatile approaches, such as LLMs, despite their own set of

challenges, to enhance the effectiveness of automated

vulnerability detection systems.

Studies have attempted to apply LLMs directly to

vulnerability detection. Zhang et al. [2] explored prompt-

enhanced vulnerability detection using ChatGPT, showing

that while LLMs can identify some vulnerabilities, they often

struggle with complex or context-dependent issues. Ullah et

al. [3] provided a comprehensive evaluation, revealing that

LLMs cannot reliably identify and reason about security

vulnerabilities yet. Zhou et al. [4] discussed emerging results

and future directions for LLMs in vulnerability detection,

highlighting both the potential and limitations of current

models.

3. Challenges of LLMs in Vulnerability Detection

One significant challenge is the limited understanding of

code context. LLMs often lack deep comprehension of

intricate relationships within codebases. Vulnerabilities

frequently involve complex interactions across multiple

functions or modules, requiring an understanding of data

flows, control structures, and execution paths. LLMs

typically analyze code at a syntactic level and may miss

vulnerabilities that require semantic analysis and reasoning

about program behavior.

Data scarcity is another critical issue. Effective training of

LLMs for vulnerability detection requires large, labeled

datasets of vulnerable and secure code across various

programming languages and vulnerability types. However,

such datasets are scarce due to the sensitive nature of

vulnerabilities and the substantial effort required for accurate

labeling. Moreover, many existing vulnerability detection

benchmarks suffer from data duplication problems, which

can lead to overestimated model performance. Ding et al. [5]

analyzed several popular datasets and found significant

amounts of duplicated code between training and test sets, as

shown in Table 1. This duplication allows models to

memorize code snippets rather than learn to generalize,

undermining the validity of evaluation results. Although

datasets like PrimeVul have been introduced to address

duplication issues, they are limited to C/C++ programs,

leaving a gap in coverage for other programming languages.

Consequently, the scarcity of high-quality, diverse, and

duplication-free datasets limits the models' ability to learn

diverse vulnerability patterns, hindering progress in this area.

(Table 1) The statistics of data duplication in existing vulnerability

detection benchmarks [5].

Accuracy and reliability problems hinder the adoption of

LLMs in security-critical contexts. Models often capture

superficial code structures without thoroughly analyzing

execution behavior, leading to high false positive rates where

safe code is incorrectly flagged as vulnerable, and false

negatives where actual vulnerabilities are missed. Empirical

studies by Ullah et al. [3] have shown that LLMs exhibit

significant inconsistencies when applied to vulnerability

detection. Their evaluation highlighted that LLMs not only

struggle with correctly identifying vulnerabilities but also

provide varying results upon repeated analyses of the same

code snippets. As illustrated in Figure 1, the results

demonstrate inconsistencies across different Common

Weakness Enumeration (CWE) scenarios, even when using a

recommended temperature setting of 0.2 for the LLM. This

unreliability poses a substantial challenge for adopting LLMs

in security-critical contexts where consistent and accurate

detection is paramount.

(Figure 1) Evaluation results for LLM output consistency. The table

presents the number of correctly answered instances out of 10

attempts for each CWE scenario and every prompt used in the study

[3].

Vulnerability detection also requires specialized domain

knowledge of programming language nuances, memory

- 761 -

ACK 2024 학술발표대회 논문집 (31권 2호)

management, and security principles. LLMs trained on

general-purpose datasets may lack this expertise, making it

challenging to identify vulnerabilities dependent on subtle

language features or specific security concepts.

Furthermore, LLMs have constrained context windows,

limiting the amount of code they can process at once. Large

codebases with complex interactions exceed these limits,

preventing the model from understanding the overall

program structure. The lack of interpretability is another

limitation; LLMs function as black boxes, providing limited

insights into their decision-making processes, making it

difficult for security experts to trust and verify their outputs.

4. Prospects and Directions for Improvement

To enhance the effectiveness of LLMs in vulnerability

detection, several strategies can be pursued. Building

specialized datasets is crucial. Developing extensive, labeled

datasets that cover a wide range of programming languages

and vulnerability types can significantly improve model

training. Collaborative efforts between industry and

academia could facilitate the creation of such datasets. By

including real-world examples with detailed annotations

from security experts, LLMs can learn nuanced vulnerability

patterns, enhancing their ability to detect complex security

issues. Expanding datasets like Big-Vul could provide the

diversity needed for better generalization.

Integrating LLMs with traditional static analysis tools and

program analysis techniques offers a promising avenue for

enhancing vulnerability detection. Hybrid models can

leverage the strengths of both approaches—using LLMs for

pattern recognition and natural language processing while

relying on static analysis for in-depth code examination and

execution flow analysis. This combination can improve

detection accuracy and reduce false positives, which remain

significant issues for LLMs in vulnerability detection. Recent

research by Zhang et al. [2] demonstrated that integrating

structural information derived from program analysis

techniques into prompt engineering can significantly enhance

the effectiveness of LLMs. By crafting prompts that include

elements like control flow graphs (CFGs), program

dependence graphs (PDGs), and data flow graphs (DFGs),

they observed improvements in detecting certain types of

vulnerabilities. For instance, incorporating data flow

information into the prompts helped the LLM focus on

relevant variable interactions and data dependencies, leading

to better identification of vulnerabilities. Figure 2 illustrates

an example where data flow is included in the prompt to

guide the LLM's analysis. This suggests that leveraging

program analysis techniques within prompt engineering can

be a practical approach to mitigate some limitations of LLMs

without the need for extensive retraining. Combining such

prompt-engineered LLMs with traditional program analysis

methods could further enhance performance, indicating that

deeper integration between these methods may yield even

better results in vulnerability detection.

Improving LLM architectures to better understand code

execution flows is also vital. Incorporating mechanisms that

allow models to reason about control structures, data

dependencies, and program semantics could enhance their

ability to detect complex vulnerabilities. Research into

models that can process larger contexts or hierarchically

analyze code could address limitations imposed by context

size restrictions. For example, adapting transformer

architectures to handle longer sequences or using hierarchical

models may enable LLMs to capture broader program

structures.

(Figure 2) Example of a prompt incorporating data flow information

to enhance LLM analysis [2].

Collaboration with human experts presents another key

direction. Developing systems where LLMs assist security

professionals can combine the efficiency of automation with

expert judgment. LLMs can serve as initial filters, flagging

potential vulnerabilities for further examination. This

collaborative approach leverages the strengths of both

humans and machines, potentially increasing the

effectiveness and trustworthiness of vulnerability detection

processes. Ullah et al. [3] emphasize the importance of

human oversight, given that LLMs cannot yet reliably

identify and reason about security vulnerabilities.

Enhancing the interpretability of LLMs is essential for

practical adoption. Techniques such as attention visualization,

explainable AI methods, or integrating model outputs with

human-readable explanations can help bridge the gap

between model predictions and expert understanding. By

providing insights into the reasoning behind their

assessments, LLMs can build trust among security

professionals and facilitate the identification of shortcomings

in the models' understanding of code semantics. Zhou et al.

[4] highlighted that current LLMs lack the necessary code

semantic understanding, which hampers their effectiveness in

vulnerability detection. Improving interpretability can

directly address this issue by revealing how LLMs process

and comprehend code structures and behaviors. With a

clearer view of the models' internal workings, researchers

can pinpoint areas where LLMs fail to capture critical code

semantics and make informed enhancements to the model

architectures, as suggested by Zhou et al. [4]. Additionally,

they advocated for the creation of specialized datasets

- 762 -

ACK 2024 학술발표대회 논문집 (31권 2호)

enriched with domain-specific knowledge to train models

more effectively. By combining enhanced interpretability

with enriched training data, LLMs can be better equipped to

understand complex code semantics, ultimately improving

their vulnerability detection capabilities.

Overall, addressing these areas can significantly improve

the capabilities of LLMs in vulnerability detection, making

them more reliable and effective tools in securing software

systems.

5. Conclusion

Large Large Language Models hold significant potential

as tools for source code analysis, including vulnerability

detection. However, they currently face substantial

challenges related to limited code understanding, data

scarcity, accuracy issues, context limitations, and lack of

interpretability. Addressing these challenges requires

concerted efforts to improve model architectures, develop

specialized datasets, integrate hybrid analysis approaches,

and foster collaboration between AI systems and human

experts.

Future research should focus on these areas to enhance the

capabilities of LLMs in vulnerability detection. By

leveraging the strengths of LLMs while mitigating their

limitations, we can contribute to more secure software

systems and reduce the risks posed by software

vulnerabilities.

Acknowledgement

This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea

government(MSIT) (RS-2023-00277326). This work was

supported by the BK21 FOUR program of the Education and

Research Program for Future ICT Pioneers, Seoul National

University in 2024. This work was partly supported by the

Institute of Information & Communications Technology

Planning & Evaluation (IITP) grant funded by the Korea

government(MSIT) (No.2020-0-01840,Analysis on

technique of accessing and acquiring user data in smartphone,

0.5) and Korea Evaluation Institute of Industrial

Technology(KEIT) grant funded by the Korea

government(MOTIE) (No.2020-0-01840,Analysis on

technique of accessing and acquiring user data in smartphone,

0.5). This work was supported by Institute of Information &

communications Technology Planning & Evaluation (IITP)

under the artificial intelligence semiconductor support

program to nurture the best talents (IITP-2023-RS-2023-

00256081) grant funded by the Korea government(MSIT)

This research was supported by the MSIT(Ministry of

Science and ICT), Korea, under the ITRC(Information

Technology Research Center) support program(IITP-2023-

2020-0-01602) supervised by the IITP(Institute for

Information & Communications Technology Planning &

Evaluation) This research was supported by Korea Planning

＆Evaluation Institute of Industrial Technology(KEIT) grant

funded by the Korea Government(MOTIE) (No. RS-2024-

00406121, Development of an Automotive Security

Vulnerability-based Threat Analysis System(R&D))

References

[1] Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., & Deng,

Z. (2018). VulDeePecker: A deep learning-based system

for vulnerability detection. Proceedings of the 25th

Annual Network and Distributed System Security

Symposium (NDSS).

[2] Chenyuan Zhang, Hao Liu, Jiutian Zeng, Kejing Yang,

Yuhong Li, and Hui Li. 2024. Prompt-enhanced software

vulnerability detection using chatgpt. Proceedings of the

2024 IEEE/ACM 46th International Conference on

Software Engineering: Companion Proceedings. 276–277.

[3] Saad Ullah, Mingji Han, Saurabh Pujar, Hammond

Pearce, Ayse Coskun, and Gianluca Stringhini. Llms

cannot reliably identify and reason about security

vulnerabilities (yet?): A comprehensive evaluation,

framework, and benchmarks. IEEE Symposium on

Security and Privacy, 2024.

[4] Xin Zhou, Ting Zhang, and David Lo. 2024. Large

Language Model for Vulnerability Detection: Emerging

Results and Future Directions. 2024 International

Conference on Software Engineering (ICSE), New Ideas

and Emerging Results (NIER) Track. IEEE

[5] Y. Ding, Y. Fu, O. Ibrahim, C. Sitawarin, X. Chen, B.

Alomair, D. Wagner, B. Ray, and Y. Chen, “Vulnerability

detection with code language models: How far are we?”

arXiv preprint arXiv:2403.18624, 2024.

- 763 -

