과제정보
본 연구는 과학기술정보통신부 및 정보통신기획평가원의 ICT혁신인재4.0 사업의 연구결과로 수행되었음 (IITP-2024-RS-2022-00156299)
참고문헌
- M. E. Ozer, P. O. Sarica and K. Y. Arga, "New Machine Learning Applications to Accelerate Personalized Medicine in Breast Cancer: Rise of the Support Vector Machines," Omics: A Journal of Integrative Biology, Vol.24, No.5, pp.241-246, 2020.
- W. Zhu, L. Xie, J. Han and X. Guo, "The Application of Deep Learning in Cancer Prognosis Prediction," Cancers, Vol.12, No.3, pp.603, 2020.
- I. T. Jolliffe, "Principal Component Analysis and Factor Analysis," Principal Component Analysis, pp.150-166, 2002.
- C. M. Bishop and N. M. Nasrabadi, "Pattern Recognition and Machine Learning," New York, Springer, 2006.
- A. Liaw and M. Wiener, "Classification and Regression by Random Forest," R News, Vol.2, No.3, pp.18-22, 2002.
- T. Chen and C. Guestrin, "XGBoost: A Scalable Tree Boosting System," In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, 2016, pp.785-794.
- G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma and T. Y. Liu, "LightGBM: A Highly Efficient Gradient Boosting Decision Tree," In Advances in Neural Information Processing Systems, Long Beach, USA, 2017, pp.3146-3154.
- L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush and A. Gulin, "CatBoost: Unbiased Boosting with Categorical Features," In Advances in Neural Information Processing Systems, Montreal, Canada, 2018, pp.6638-6648.
- V. Vapnik, "Support-Vector Networks," Machine Learning, pp.273-297, 1995.
- T. Cover and P. Hart, "Nearest Neighbor Pattern Classification," IEEE Transactions on Information Theory, Vol.13, No.1, pp.21-27, 1967.
- I. Goodfellow, Y. Bengio and A. Courville, "Deep Learning," Cambridge, MIT Press, 2016.