Acknowledgement
본 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2022R1A2C4001270). 또한, 본 연구는 과학기술정보통신부 및 정보통신기획평가원의 융합보안핵심인재양성사업의 연구 결과로 수행되었음 (IITP-2024-RS-2024-00426853).
References
- McMahan, et al. "Communication-efficient learning of deep networks from decentralized data.", PMLR, 2017.
- Li, Tian, et al. "Federated learning: Challenges, methods, and future directions." IEEE signal processing magazine Vol 37. No 3, 50-60p, 2020.
- Zhang, Lin, et al. "Fine-tuning global model via data-free knowledge distillation for non-iid federated learning." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022.
- Zhang, Li, et al. "Homomorphic encryption-based privacy-preserving federated learning in IoT-enabled healthcare system." IEEE Transactions on Network Science and Engineering Vol 10, No 5, 2864-2880p, 2022.
- Zhu, et al. "Data-free knowledge distillation for heterogeneous federated learning." , PMLR, 2021.
- Li, Daliang, and Junpu Wang. "Fedmd: Heterogenous federated learning via model distillation." arXiv preprint arXiv:1910.03581, 2019.
- Schmidt, Philip, et al. "Introducing wesad, a multimodal dataset for wearable stress and affect detection." Proceedings of the 20th ACM international conference on multimodal interaction. 2018.