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Abstract 

Binary Code Similarity Detection (BCSD) plays a critical role in software security applications like 

vulnerability detection and malware analysis. This review surveys both traditional and machine-learning-based 

approaches to BCSD. Traditional methods, such as control flow graph matching and symbolic execution, have 

demonstrated effectiveness but suffer from scalability issues, particularly with obfuscated code. Modern machine 

learning techniques, including graph neural networks and deep learning models, offer improved adaptability across 

architectures and scalability. Despite these advancements, challenges remain in cross-platform detection, handling 

obfuscation, and deploying BCSD tools in real-world security scenarios. The review highlights recent innovations 

and outlines potential future directions for enhancing the robustness and efficiency of BCSD systems. 

 

1. Introduction 

Binary Code Similarity Detection (BCSD) has emerged as 

a crucial technique in several fields, such as vulnerability 

detection, malware analysis, and intellectual property 

protection. As software systems grow in complexity and the 

diversity of architectures increases, identifying similarities 

between binary code across different platforms becomes 

more challenging. Traditional methods of BCSD primarily 

focused on structural and syntactic analyses, leveraging 

control flow graphs (CFGs) and symbolic execution to detect 

similarities. However, these approaches often struggle with 

scalability, especially when dealing with complex or 

obfuscated code. In recent years, machine learning-based 

methods have gained traction due to their ability to learn 

patterns in binary code and adapt across various architectures. 

As BCSD continues to evolve, it becomes increasingly 

important to understand the strengths and limitations of all 

these approaches. This study provides a comprehensive 

review of existing BCSD methods, exploring both traditional 

and machine-learning-driven techniques, with an emphasis 

on deep learning-based techniques. The study also looks at 

common evaluation methods and outlines future directions to 

address the remaining challenges in the field. 

 

 

2. Traditional BCSD approaches 

Traditional Binary Code Similarity Detection (BCSD) 

techniques largely rely on structural and syntactic analysis of 

binary programs. A predominant approach is graph-based 

matching [1, 2, 3, 4], where binary programs' control Flow 

Graphs (CFGs) are extracted and compared to identify 

similarities. In these methods, each function in a binary is 

represented as a graph, with nodes corresponding to basic 

blocks of code and edges representing control flow between 

them. Graph isomorphism algorithms are then applied to 

match similar structures, identifying commonalities between 

different binaries or across different compilation settings. 

 

Another approach is symbolic execution and theorem 

proving [1, 2]. These techniques aim to evaluate binary 

behavior by exploring possible execution paths in a program. 

Symbolic execution treats program inputs as symbolic 

variables, enabling analysis across multiple execution 

scenarios without concrete input values. By assessing how a 

binary operates under various conditions, symbolic execution 

identifies functional similarities between binaries. However, 

it suffers from the state explosion problem, where the 

number of potential execution paths increases exponentially, 

making the technique less scalable for large binaries or those 

with complex control flows. 

 

Furthermore, basic block fingerprinting and signature-

based methods [3] have been employed to quickly compare 

binaries by generating unique fingerprints for each block or 

function. These methods provide faster comparisons, but they 

are susceptible to code obfuscation and compiler 

optimizations, which can change the binary’s structure 

without altering its functionality. Minor changes in 

instruction order or register usage can lead to a mismatch, 

making these methods less robust in real-world scenarios 
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involving obfuscated code or different compilation settings. 

 

 

3. Machine Learning Approaches in BCSD 

As traditional BCSD methods encountered scalability and 

efficiency challenges, particularly with complex binaries and 

cross-architecture detection [1, 4], machine learning (ML) 

approaches have emerged as a powerful alternative. These 

methods leverage the ability of ML models to automatically 

learn patterns in binary code, leading to more adaptable and 

efficient BCSD systems [3, 5, 6, 7, 8, 9, 10]. 

 

One prominent machine learning technique is graph neural 

networks (GNNs). GNNs are particularly effective for 

analyzing binary code as they can capture structural 

information from control flow graphs (CFGs) and data flow 

graphs. In the BEDetector system [3], a graph autoencoder 

(GAE) is employed to extract global structural features from 

CFGs, surpassing the limitations of traditional CFG-based 

matching methods by learning the latent structural features of 

the graph, while also incorporating semantic analysis 

inspired by natural language processing techniques. 

 

Another important direction in machine learning for 

BCSD is embedding-based techniques, where the goal is to 

convert assembly instructions or intermediate representations 

of binaries into numerical embeddings that can be compared 

efficiently. For example, Asm2Vec [6] converts assembly 

code or intermediate code into vector representations, which 

are then used to measure the similarity between functions or 

blocks of code. 

 

Recently, the use of deep learning models has gained the 

most attraction, particularly recurrent neural networks and 

Long Short-Term Memory (LSTM) networks. In [5], an 

LSTM network generates feature embeddings from binary 

files by learning from sequences of local features extracted 

from CFGs. These embeddings are then compared using a 

Siamese Neural Network, which is designed to compute the 

similarity between two binary files by learning semantic 

similarities between their embeddings. 

 

 

4. Deep Learning for BCSD 

While machine learning techniques have improved the 

scalability and efficiency of BCSD, the introduction of deep 

learning has significantly enhanced the field’s ability to 

detect similarities for more complex binaries. One of the 

most significant challenges in BCSD is the ability to detect 

similarities across different instruction set architectures 

(ISAs) and platforms. Deep learning models, particularly 

those leveraging transfer learning and pre-trained 

embeddings, offer a robust solution to the challenge of 

identifying binary similarities between code compiled for 

different ISAs [7, 8, 9, 11]. 

 

Indeed, deep learning offers a more sophisticated 

approach to capturing both structural and semantic patterns 

in binary code. Unlike traditional machine learning models, 

deep learning systems can automatically extract features 

without the need for manual feature engineering, allowing 

them to adapt more effectively to cross-architecture 

similarity detection. One of the key advantages of deep 

learning in BCSD is its ability to generate rich embeddings 

of binary code that capture complex patterns, making it more 

resilient to changes introduced by different compilation 

settings, optimization levels, or instruction sets. Embeddings 

allow for the conversion of binary instructions or 

intermediate representations into dense vectors, which can be 

compared efficiently across architectures. In the case of 

BERT-inspired models, embeddings are not only 

architecture-agnostic but also capture deep semantic 

relationships between instructions. 

 

BERT-inspired models leverage transfer learning and pre-

trained embeddings, allowing for effective cross-platform 

similarity detection without requiring retraining for each new 

architecture. 

The BinShot [7] system is a prominent example of using a 

BERT-based architecture to detect binary code similarities 

across different ISAs. BinShot employs a transferable 

similarity learning approach, where the model is pre-trained 

on a large corpus of assembly code, enabling it to generalize 

to new binaries compiled for different architectures. By 

leveraging BERT’s ability to understand the contextual 

relationships between instructions, the model is capable of 

learning higher-level semantic patterns that persist across 

different platforms. 

In addition to BinShot, jTrans [8] is another deep learning-

based system that utilizes neural machine translation models 

to map binaries between different architectures. This model 

is trained on aligned binary pairs, learning to translate code 

from one architecture to another while preserving its 

semantic meaning. By combining the power of BERT-like 

pre-training with neural translation, jTrans demonstrates the 

potential of deep learning in bridging the gap between 

architectures and enabling robust cross-platform detection. 

Similarly, Trex [9] introduces a cross-architecture binary 

code analysis method that focuses on instruction embeddings 

that generalize across architectures, improving the scalability 

of binary analysis for security and vulnerability detection. 

 

 

5. Applications of BCSD 

BCSD has a range of applications across various domains 

due to its ability to identify similar code fragments in binary 
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programs. BCSD can detect plagiarized code segments, even 

in cases where binaries have been obfuscated or compiled 

differently. This is particularly useful in software copyright 

enforcement, ensuring that reused code is properly attributed. 

BCSD also helps in recognizing similarities between known 

malware binaries and new or unknown samples. By 

identifying code similarities, it assists in detecting malware 

variants that reuse portions of malicious code, enabling faster 

classification and response. 

 

However, one of the most critical applications of BCSD is 

vulnerability detection. BCSD enables the discovery of 

security flaws in binary programs by identifying similarities 

between known vulnerable code segments and other binaries. 

With the rapid growth of software, manual vulnerability 

detection is inefficient, and BCSD has emerged as a powerful 

solution to automate this process across various platforms 

and architectures, especially in the context of code reuse. 

Techniques for vulnerability detection using BCSD employ 

both traditional and machine learning approaches, along with 

specialized tools designed to detect known and novel 

vulnerabilities [1, 3, 4, 12]. 

 

Graph-based methods, such as VulHawk [12], use CFGs to 

match structural patterns of vulnerable code, while machine 

learning models are trained to identify patterns in vulnerable 

code segments by learning from a large dataset of known 

vulnerabilities. BEDetector [3] utilizes GAEs to combine 

semantic and structural features for accurate detection. These 

methods improve the efficiency of detecting vulnerable code 

clones or reused vulnerabilities across different systems. 

 

Another promising technique is binary function similarity 

detection for vulnerabilities, where the focus is on detecting 

vulnerable code clones across versions or architectures. Tools 

like [1] and [4] take advantage of code similarity to find 

vulnerabilities introduced through code reuse or software 

updates. These tools employ embedding methods to detect 

similar functions that share vulnerability signatures, helping 

developers catch security issues before they propagate across 

different systems. 

 

 

6. Evaluation Metrics and Benchmarking 

Evaluating the effectiveness of Binary Code Similarity 

Detection (BCSD) systems is crucial for understanding their 

accuracy, scalability, and overall performance. Researchers 

typically rely on a set of well-established metrics and 

benchmarking datasets to assess the quality of BCSD 

methods. These metrics help compare different approaches, 

whether they are graph-based, machine-learning-driven, or 

hybrid methods. Common evaluation metrics include 

precision, recall, F1-score, and accuracy, which provide 

insight into how well a BCSD system identifies true positives 

while minimizing false positives and negatives [1, 3, 5]. 

 

Precision is a metric used to measure the proportion of 

correctly identified binary similarities (true positives) out of 

all detected similarities. It is particularly important in BCSD 

systems designed for vulnerability detection, where false 

positives can lead to wasted time and effort in investigating 

benign code. Recall, or sensitivity, measures the system’s 

ability to correctly identify all relevant binary similarities, 

emphasizing its ability to detect true positives even when 

they are sparse. High recall is critical in tasks like malware 

detection or code clone analysis, where missing any instance 

of similarity could have serious security consequences. The 

F1 score balances both precision and recall, providing a 

single metric that captures the trade-offs between these two. 

It is often used to evaluate BCSD systems that need to 

balance the detection of true positives while avoiding too 

many false positives. Lastly, time and computational cost are 

important metrics when assessing BCSD tools, especially 

when dealing with large datasets. 

 

When evaluating BCSD tools, researchers employ a 

variety of benchmarking datasets to ensure consistent 

comparison across systems. These datasets typically include 

real-world binaries, malware samples, and firmware binaries. 

For instance, BEDetector [3] was tested on real-world 

firmware files, where it successfully identified vulnerabilities 

in commonly used libraries and systems. As for vulnerability 

detection tools, the Juliet test suite and CVEfixes dataset, 

which contain known flaws and vulnerabilities, are often 

used to measure how effective these tools are at finding real-

world vulnerabilities. 

 

 

7. Future Directions 

As Binary Code Similarity Detection (BCSD) continues to 

evolve, several promising directions could improve its 

effectiveness. Future research in BCSD aims to address the 

remaining challenges related to cross-platform detection, 

scalability, handling obfuscation, and enhancing the 

integration of machine learning models [3, 11, 12]. Current 

systems, while effective, still face challenges when dealing 

with binaries compiled for different architectures or 

optimized using different compilers. Handling obfuscation 

and code transformations is another significant challenge. 

Many BCSD systems struggle to detect similarities in 

binaries that have been deliberately obfuscated to hide 

malicious intent or proprietary code. Lastly, integration with 

real-world security tools and frameworks is a key future 

direction. While many BCSD techniques are developed in 

research settings, their deployment still seems limited. For 

example, there is potential for BCSD tools to be more tightly 
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integrated with existing security platforms, such as malware 

detection systems. A promising area of synergy is the 

combination of BCSD with directed fuzzing. BCSD can help 

identify vulnerable or high-risk code segments by detecting 

similarities to known vulnerabilities. Directed fuzzing can 

then focus on these specific areas to trigger potential security 

flaws and confirm the presence of vulnerabilities. At the 

same time, it provides a way to reproduce them, which 

makes it easier for developers to patch these vulnerabilities.  

 

 

8. Conclusion 

Binary Code Similarity Detection (BCSD) has advanced 

from traditional graph-based and symbolic methods to 

modern machine learning-driven approaches. While machine 

learning models have introduced significant improvements, 

challenges remain. Future work should focus on enhancing 

cross-architecture capabilities, improving the interpretability 

of machine learning models, and integrating BCSD with real-

world security tools. 
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