
ACK 2024 학술발표대회 논문집 (31권 2호)

A Study on Binary Code Similarity Detection

Bastien Schoonaert1, Hyun-Jun Kim1, Yun-Heung Paek1
1Dept. of Electrical and Computer Engineering and Inter-University Semiconductor

Research Center (ISRC), Seoul National University
bastien.schoonaert@snu.ac.kr, hjkim@sor.snu.ac.kr, ypaek@snu.ac.kr

A Study on Binary Code Similarity Detection

바스티안 1, 김현준 1, 백윤흥 1
1서울대학교 전기정보공학부, 반도체 공동연구소

Abstract

Binary Code Similarity Detection (BCSD) plays a critical role in software security applications like

vulnerability detection and malware analysis. This review surveys both traditional and machine-learning-based

approaches to BCSD. Traditional methods, such as control flow graph matching and symbolic execution, have

demonstrated effectiveness but suffer from scalability issues, particularly with obfuscated code. Modern machine

learning techniques, including graph neural networks and deep learning models, offer improved adaptability across

architectures and scalability. Despite these advancements, challenges remain in cross-platform detection, handling

obfuscation, and deploying BCSD tools in real-world security scenarios. The review highlights recent innovations

and outlines potential future directions for enhancing the robustness and efficiency of BCSD systems.

1. Introduction

Binary Code Similarity Detection (BCSD) has emerged as

a crucial technique in several fields, such as vulnerability

detection, malware analysis, and intellectual property

protection. As software systems grow in complexity and the

diversity of architectures increases, identifying similarities

between binary code across different platforms becomes

more challenging. Traditional methods of BCSD primarily

focused on structural and syntactic analyses, leveraging

control flow graphs (CFGs) and symbolic execution to detect

similarities. However, these approaches often struggle with

scalability, especially when dealing with complex or

obfuscated code. In recent years, machine learning-based

methods have gained traction due to their ability to learn

patterns in binary code and adapt across various architectures.

As BCSD continues to evolve, it becomes increasingly

important to understand the strengths and limitations of all

these approaches. This study provides a comprehensive

review of existing BCSD methods, exploring both traditional

and machine-learning-driven techniques, with an emphasis

on deep learning-based techniques. The study also looks at

common evaluation methods and outlines future directions to

address the remaining challenges in the field.

2. Traditional BCSD approaches

Traditional Binary Code Similarity Detection (BCSD)

techniques largely rely on structural and syntactic analysis of

binary programs. A predominant approach is graph-based

matching [1, 2, 3, 4], where binary programs' control Flow

Graphs (CFGs) are extracted and compared to identify

similarities. In these methods, each function in a binary is

represented as a graph, with nodes corresponding to basic

blocks of code and edges representing control flow between

them. Graph isomorphism algorithms are then applied to

match similar structures, identifying commonalities between

different binaries or across different compilation settings.

Another approach is symbolic execution and theorem

proving [1, 2]. These techniques aim to evaluate binary

behavior by exploring possible execution paths in a program.

Symbolic execution treats program inputs as symbolic

variables, enabling analysis across multiple execution

scenarios without concrete input values. By assessing how a

binary operates under various conditions, symbolic execution

identifies functional similarities between binaries. However,

it suffers from the state explosion problem, where the

number of potential execution paths increases exponentially,

making the technique less scalable for large binaries or those

with complex control flows.

Furthermore, basic block fingerprinting and signature-

based methods [3] have been employed to quickly compare

binaries by generating unique fingerprints for each block or

function. These methods provide faster comparisons, but they

are susceptible to code obfuscation and compiler

optimizations, which can change the binary’s structure

without altering its functionality. Minor changes in

instruction order or register usage can lead to a mismatch,

making these methods less robust in real-world scenarios

- 216 -

mailto:bastien.schoonaert@snu.ac.kr
mailto:hjkim@sor.snu.ac.kr
mailto:ypaek@snu.ac.kr

ACK 2024 학술발표대회 논문집 (31권 2호)

involving obfuscated code or different compilation settings.

3. Machine Learning Approaches in BCSD

As traditional BCSD methods encountered scalability and

efficiency challenges, particularly with complex binaries and

cross-architecture detection [1, 4], machine learning (ML)

approaches have emerged as a powerful alternative. These

methods leverage the ability of ML models to automatically

learn patterns in binary code, leading to more adaptable and

efficient BCSD systems [3, 5, 6, 7, 8, 9, 10].

One prominent machine learning technique is graph neural

networks (GNNs). GNNs are particularly effective for

analyzing binary code as they can capture structural

information from control flow graphs (CFGs) and data flow

graphs. In the BEDetector system [3], a graph autoencoder

(GAE) is employed to extract global structural features from

CFGs, surpassing the limitations of traditional CFG-based

matching methods by learning the latent structural features of

the graph, while also incorporating semantic analysis

inspired by natural language processing techniques.

Another important direction in machine learning for

BCSD is embedding-based techniques, where the goal is to

convert assembly instructions or intermediate representations

of binaries into numerical embeddings that can be compared

efficiently. For example, Asm2Vec [6] converts assembly

code or intermediate code into vector representations, which

are then used to measure the similarity between functions or

blocks of code.

Recently, the use of deep learning models has gained the

most attraction, particularly recurrent neural networks and

Long Short-Term Memory (LSTM) networks. In [5], an

LSTM network generates feature embeddings from binary

files by learning from sequences of local features extracted

from CFGs. These embeddings are then compared using a

Siamese Neural Network, which is designed to compute the

similarity between two binary files by learning semantic

similarities between their embeddings.

4. Deep Learning for BCSD

While machine learning techniques have improved the

scalability and efficiency of BCSD, the introduction of deep

learning has significantly enhanced the field’s ability to

detect similarities for more complex binaries. One of the

most significant challenges in BCSD is the ability to detect

similarities across different instruction set architectures

(ISAs) and platforms. Deep learning models, particularly

those leveraging transfer learning and pre-trained

embeddings, offer a robust solution to the challenge of

identifying binary similarities between code compiled for

different ISAs [7, 8, 9, 11].

Indeed, deep learning offers a more sophisticated

approach to capturing both structural and semantic patterns

in binary code. Unlike traditional machine learning models,

deep learning systems can automatically extract features

without the need for manual feature engineering, allowing

them to adapt more effectively to cross-architecture

similarity detection. One of the key advantages of deep

learning in BCSD is its ability to generate rich embeddings

of binary code that capture complex patterns, making it more

resilient to changes introduced by different compilation

settings, optimization levels, or instruction sets. Embeddings

allow for the conversion of binary instructions or

intermediate representations into dense vectors, which can be

compared efficiently across architectures. In the case of

BERT-inspired models, embeddings are not only

architecture-agnostic but also capture deep semantic

relationships between instructions.

BERT-inspired models leverage transfer learning and pre-

trained embeddings, allowing for effective cross-platform

similarity detection without requiring retraining for each new

architecture.

The BinShot [7] system is a prominent example of using a

BERT-based architecture to detect binary code similarities

across different ISAs. BinShot employs a transferable

similarity learning approach, where the model is pre-trained

on a large corpus of assembly code, enabling it to generalize

to new binaries compiled for different architectures. By

leveraging BERT’s ability to understand the contextual

relationships between instructions, the model is capable of

learning higher-level semantic patterns that persist across

different platforms.

In addition to BinShot, jTrans [8] is another deep learning-

based system that utilizes neural machine translation models

to map binaries between different architectures. This model

is trained on aligned binary pairs, learning to translate code

from one architecture to another while preserving its

semantic meaning. By combining the power of BERT-like

pre-training with neural translation, jTrans demonstrates the

potential of deep learning in bridging the gap between

architectures and enabling robust cross-platform detection.

Similarly, Trex [9] introduces a cross-architecture binary

code analysis method that focuses on instruction embeddings

that generalize across architectures, improving the scalability

of binary analysis for security and vulnerability detection.

5. Applications of BCSD

BCSD has a range of applications across various domains

due to its ability to identify similar code fragments in binary

- 217 -

ACK 2024 학술발표대회 논문집 (31권 2호)

programs. BCSD can detect plagiarized code segments, even

in cases where binaries have been obfuscated or compiled

differently. This is particularly useful in software copyright

enforcement, ensuring that reused code is properly attributed.

BCSD also helps in recognizing similarities between known

malware binaries and new or unknown samples. By

identifying code similarities, it assists in detecting malware

variants that reuse portions of malicious code, enabling faster

classification and response.

However, one of the most critical applications of BCSD is

vulnerability detection. BCSD enables the discovery of

security flaws in binary programs by identifying similarities

between known vulnerable code segments and other binaries.

With the rapid growth of software, manual vulnerability

detection is inefficient, and BCSD has emerged as a powerful

solution to automate this process across various platforms

and architectures, especially in the context of code reuse.

Techniques for vulnerability detection using BCSD employ

both traditional and machine learning approaches, along with

specialized tools designed to detect known and novel

vulnerabilities [1, 3, 4, 12].

Graph-based methods, such as VulHawk [12], use CFGs to

match structural patterns of vulnerable code, while machine

learning models are trained to identify patterns in vulnerable

code segments by learning from a large dataset of known

vulnerabilities. BEDetector [3] utilizes GAEs to combine

semantic and structural features for accurate detection. These

methods improve the efficiency of detecting vulnerable code

clones or reused vulnerabilities across different systems.

Another promising technique is binary function similarity

detection for vulnerabilities, where the focus is on detecting

vulnerable code clones across versions or architectures. Tools

like [1] and [4] take advantage of code similarity to find

vulnerabilities introduced through code reuse or software

updates. These tools employ embedding methods to detect

similar functions that share vulnerability signatures, helping

developers catch security issues before they propagate across

different systems.

6. Evaluation Metrics and Benchmarking

Evaluating the effectiveness of Binary Code Similarity

Detection (BCSD) systems is crucial for understanding their

accuracy, scalability, and overall performance. Researchers

typically rely on a set of well-established metrics and

benchmarking datasets to assess the quality of BCSD

methods. These metrics help compare different approaches,

whether they are graph-based, machine-learning-driven, or

hybrid methods. Common evaluation metrics include

precision, recall, F1-score, and accuracy, which provide

insight into how well a BCSD system identifies true positives

while minimizing false positives and negatives [1, 3, 5].

Precision is a metric used to measure the proportion of

correctly identified binary similarities (true positives) out of

all detected similarities. It is particularly important in BCSD

systems designed for vulnerability detection, where false

positives can lead to wasted time and effort in investigating

benign code. Recall, or sensitivity, measures the system’s

ability to correctly identify all relevant binary similarities,

emphasizing its ability to detect true positives even when

they are sparse. High recall is critical in tasks like malware

detection or code clone analysis, where missing any instance

of similarity could have serious security consequences. The

F1 score balances both precision and recall, providing a

single metric that captures the trade-offs between these two.

It is often used to evaluate BCSD systems that need to

balance the detection of true positives while avoiding too

many false positives. Lastly, time and computational cost are

important metrics when assessing BCSD tools, especially

when dealing with large datasets.

When evaluating BCSD tools, researchers employ a

variety of benchmarking datasets to ensure consistent

comparison across systems. These datasets typically include

real-world binaries, malware samples, and firmware binaries.

For instance, BEDetector [3] was tested on real-world

firmware files, where it successfully identified vulnerabilities

in commonly used libraries and systems. As for vulnerability

detection tools, the Juliet test suite and CVEfixes dataset,

which contain known flaws and vulnerabilities, are often

used to measure how effective these tools are at finding real-

world vulnerabilities.

7. Future Directions

As Binary Code Similarity Detection (BCSD) continues to

evolve, several promising directions could improve its

effectiveness. Future research in BCSD aims to address the

remaining challenges related to cross-platform detection,

scalability, handling obfuscation, and enhancing the

integration of machine learning models [3, 11, 12]. Current

systems, while effective, still face challenges when dealing

with binaries compiled for different architectures or

optimized using different compilers. Handling obfuscation

and code transformations is another significant challenge.

Many BCSD systems struggle to detect similarities in

binaries that have been deliberately obfuscated to hide

malicious intent or proprietary code. Lastly, integration with

real-world security tools and frameworks is a key future

direction. While many BCSD techniques are developed in

research settings, their deployment still seems limited. For

example, there is potential for BCSD tools to be more tightly

- 218 -

ACK 2024 학술발표대회 논문집 (31권 2호)

integrated with existing security platforms, such as malware

detection systems. A promising area of synergy is the

combination of BCSD with directed fuzzing. BCSD can help

identify vulnerable or high-risk code segments by detecting

similarities to known vulnerabilities. Directed fuzzing can

then focus on these specific areas to trigger potential security

flaws and confirm the presence of vulnerabilities. At the

same time, it provides a way to reproduce them, which

makes it easier for developers to patch these vulnerabilities.

8. Conclusion

Binary Code Similarity Detection (BCSD) has advanced

from traditional graph-based and symbolic methods to

modern machine learning-driven approaches. While machine

learning models have introduced significant improvements,

challenges remain. Future work should focus on enhancing

cross-architecture capabilities, improving the interpretability

of machine learning models, and integrating BCSD with real-

world security tools.

Acknowledgment

This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korean

government (MSIT) (RS-2023-00277326, 0.1), the Institute

of Information & communications Technology Planning &

Evaluation (IITP) under the artificial intelligence

semiconductor support program to nurture the best talents

grant funded by the Korean government (MSIT) (IITP-2023-

RS-2023-00256081), the Institute of Information &

communications Technology Planning & Evaluation (IITP)

grant funded by the Korean government (MSIT) (No.2020-0-

01840, Analysis on technique of accessing and acquiring user

data in smartphone, 0.5), the BK21 FOUR program of the

Education and Research Program for Future ICT Pioneers,

Seoul National University in 2024, Inter-University

Semiconductor Research Center (ISRC).

References

[1] X. Zhang, W. Sun, J. Pang, F. Liu, and Z. Ma. 2020.

"Similarity Metric Method for Binary Basic Blocks of

Cross-Instruction Set Architecture". Proceedings 2020

Workshop on Binary Analysis Research.

[2] P. Keller, A. K. Kaboré, L. Plein, J. Klein, Y. Le Traon,

and T. F. Bissyandé. 2021. "What You See is What it

Means! Semantic Representation Learning of Code based

on Visualization and Transfer Learning". ACM

Transactions on Software Engineering and Methodology,

31, 2, Article 31 (April 2022).

[3] L. Yu, Y. Lu, Y. Shen, H. Huang, and K. Zhu. 2021.

"BEDetector: A Two-Channel Encoding Method to

Detect Vulnerabilities Based on Binary Similarity". In

IEEE Access, vol. 9, 51631-51645.

[4] D. Kim, E. Kim, S. Cha, S. Son, and Y. Kim. 2023.

"Revisiting Binary Code Similarity Analysis Using

Interpretable Feature Engineering and Lessons Learned".

IEEE Transactions on Software Engineering, 49, 4 (April

2023), 1661–1682.

[5] Z. Luo, T. Hou, X. Zhou, H. Zeng, and Z. Lu. 2021.

"Binary Code Similarity Detection through LSTM and

Siamese Neural Network". EAI Endorsed Transactions

on Security and Safety, vol. 8, no. 29, p. e1, Sep. 2021.

[6] S. H. H. Ding, B. C. M. Fung and P. Charland. 2019.

"Asm2Vec: Boosting Static Representation Robustness

for Binary Clone Search against Code Obfuscation and

Compiler Optimization". 2019 IEEE Symposium on

Security and Privacy (SP), San Francisco, CA, USA,

472-489.

[7] S. Ahn, S. Ahn, H. Koo, and Y. Paek. 2022. "Practical

Binary Code Similarity Detection with BERT-based

Transferable Similarity Learning". In Proceedings of the

38th Annual Computer Security Applications Conference

(ACSAC '22). Association for Computing Machinery,

New York, NY, USA, 361–374.

[8] H. Wang, W. Qu, G. Katz, W. Zhu, Z. Gao, H. Qiu, J.

Zhuge, and C. Zhang. 2022. "JTrans: jump-aware

transformer for binary code similarity detection". In

Proceedings of the 31st ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA

2022). Association for Computing Machinery, New York,

NY, USA, 1–13.

[9] K. Pei, Z. Xuan, S. Jana, and B. Ray. 2020. "Trex:

Learning Execution Semantics from Micro-Traces for

Binary Similarity".

[10] X. Xu, S. Feng, Y. Ye, G. Shen, Z. Su, S. Cheng, G. Tao,

Q. Shi, Z. Zhang, and X. Zhang. 2023. "Improving

Binary Code Similarity Transformer Models by

Semantics-Driven Instruction Deemphasis". In

Proceedings of the 32nd ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA

2023). Association for Computing Machinery, New York,

NY, USA, 1106–1118.

[11] H. Wang, Z. Gao, C. Zhang, M. Sun, Y. Zhou, H. Qiu,

and X. Xiao. 2024. "CEBin: A Cost-Effective Framework

for Large-Scale Binary Code Similarity Detection". In

Proceedings of the 33rd ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA

2024). Association for Computing Machinery, New York,

NY, USA, 149–161.

[12] Z. Luo, P. Wang, B. Wang, Y. Tang, W. Xie, X. Zhou, D.

Liu, and K. Lu. 2023. "VulHawk: Cross-architecture

Vulnerability Detection with Entropy-based Binary Code

Search". In Network and Distributed System Security

(NDSS) Symposium 2023, San Diego, CA, USA.

- 219 -

