Acknowledgement
본 연구는 과학기술정보통신부 및 정보통신기획평가원의 소프트웨어중심대학사업(2021-0-01409)과 과학기술정보통신부 및 정보통신기획평가원의 인공지능융합혁신인재양성사업(IITP-2023-RS-2023-00256629), 대학ICT연구센터사업(IITP-2024-RS-2024-00437718)의 연구 결과로 수행되었음
References
- Wang, Jun, et al. "Personalizing label prediction for GitHub issues." Information and Software Technology, vol. 145, 2022, p. 106845.
- Wei, Jason, and Kai Zou. "Eda: Easy data augmentation techniques for boosting performance on text classification tasks." Proceedings of the EMNLP-IJCNLP 2019, Hong Kong, 2019, pp. 6382-6388.
- Heo, Jueun, and Seonah Lee. "An empirical study on the performance of individual issue label prediction." Proceedings of the 2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR), Melbourne, Australia, 2023, pp. 228-233.
- Fang, Sen, et al. "RepresentThemAll: A universal learning representation of bug reports." Proceedings of the 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE), Melbourne, Australia, 2023.