Acknowledgement
본 연구는 과학기술정보통신부 및 정보통신기획평가원의 SW중심대학사업의 지원을 받아 수행되었음(2024-0-00071)
References
- A. Matin et al., "AIoT for sustainable manufacturing: Overview, challenges, and opportunities,"in Elsevier IoT, p. 100901, 2023.
- Y. C. Lee et al., "High-Performance Multiband Ambient RF Energy Harvesting Front-End System for Sustainable IoT Applications-A Review," in IEEE Access, 2023.
- A. Bourechak et al., "At the Confluence of Artificial Intelligence and Edge Computing in IoT-Based Applications: A Review and New Perspectives," in MDPI Sensors, vol. 23, no 3, p. 1639, 2023.
- E. T. M. Beltran et al., "Decentralized federated learning: Fundamentals, state of the art, frameworks, trends, and challenges," in IEEE Communications Surveys & Tutorials, 2023.
- Z. Wen et al., "Approxiot: Approximate analytics for edge computing,", in IEEE ICDCS, pp. 411-421, Jul. 2018.
- M. Kang et al., "Energy-aware Transmission Power Control for Solar Energy Harvesting Wireless sensor system and Its Effects on Network-wide Performance", KIICE,vol. 17, no. 2, pp.750-753, Oct. 2013.