과제정보
본 연구는 2024 년 과학기술정보통신부 및 정보통신기획평가원의 SW 중심대학사업의 연구 결과로 수행되었음(2021-0-01399)
참고문헌
- J. Long, E. Shelhamer, and T. Darrell, "Fully Convolutional Networks for Semantic Segmentation," 2015, arXiv:1411.4038 [cs.CV].
- L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, "DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834-848, April 2018. DOI: 10.1109/TPAMI.2017.2699184.
- N. Siddique, S. Paheding, C. P. Elkin, and V. Devabhaktuni, "U-Net and Its Variants for Medical Image Segmentation: A Review of Theory and Applications," IEEE Access, vol. 9, pp. 82031-82057, 2021. DOI: 10.1109/ACCESS.2021.3086020.
- V. Badrinarayanan, A. Kendall, and R. Cipolla, "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation," 2016. Available: https://doi.org/10.48550/arXiv.1511.00561
- O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S. McDonagh, N. Y. Hammerla, B. Kainz, B. Glocker, and D. Rueckert, "Attention U-Net: Learning Where to Look for the Pancreas," arXiv e-prints, Apr 2018, arXiv:1804.03999. DOI: 10.48550/arXiv.1804.03999.
- S. Woo, J. Park, J. Lee, and I. S. Kweon, "CBAM: Convolutional Block Attention Module," in Computer Vision - ECCV 2018, edited by V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Springer International Publishing, Cham, 2018, pp. 3-19. DOI: 10.1007/978-3-030-01234-2_1.
- J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu, "Dual attention network for scene segmentation," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 3146-3154.