Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (No. RS-2022-00144150) and the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry, & Energy (MOTIE) of the Republic of Korea (No. 20224B10100130)
References
- US NRC, RG 1.168, Verification, Validation, Reviews, and Audits for Digital Computer Software used in Safety Systems of Nuclear Power Plants, 2013
- IEEE, IEEE 1012, Standard for Software Verification and Validation, 2004
- Zhang et. al., "Machine Learning Testing: Survey, Landscapes and Horizons", IEEE Transactions on Software Engineering, Vol. 48, Issue 1, pp. 1-36, 2022
- ISO/IEC, ISO/IEC TR 29119-11, "Guidelines on the testing of AI-based systems", 2020
- 한국정보통신기술협회, TTAK.KO-10.1497, " 인공지능 시스템 신뢰성 제고를 위한 요구사항", 2023
- The Institution of Engineering and Technology, "The Application of Artificial Intelligence in Functional Safety", 2024
- 정보통신산업진흥원, "기업 공개소프트웨어 거버넌스 가이드", 2021
- Sandip Kundu, "Security and Privacy of Machine Learning Algorithms", International Symposium on Quality Electronic Design, 2019
- Florian Tramer et. al., "Stealing Machine Learning Models via Prediction APIs", Proceedings of the 25th USENIX Conference on Security Symposium, pp. 601-618, 2016
- Ian Goodfellow et. al., "Explain and harnessing adversarial examples", ICLR, 2015
- 한국정보통신기술협회, TTAK.KO-11.0280, "검증용 데이터세트의 밸런스 기반 인공지능 소프트웨어 신뢰성 평가 방법 - 제 3 부: 시계열 타입 밸런스 데이터 설계", 2021