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ABSTRACT 

Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by a progressive decline in cognitive 

function. Accurate and early diagnosis of AD is crucial for effective management and treatment. Traditional 

machine learning models, though commonly applied, often fall short in capturing the intricate relationships 

between diverse tabular data. Furthermore, the missing data issue, typically addressed using conventional 

imputation techniques, leads to reduced accuracy and generalizability of AD classification models. This paper 

introduces ADxClass, a novel deep learning framework that enhances AD classification by leveraging multi-

domain attention fusion and data type-based imputation techniques for handling missing heterogeneous tabular 

data. ADxClass integrates data from various domains, including demographic, cognitive, genetic, and biomarkers 

obtained from neuroimaging measurements, to improve the robustness and accuracy of AD classification models. 

The model’s efficiency is validated via a 5-fold cross-validation on the Alzheimer's Disease Neuroimaging 

Initiative (ADNI) dataset, showing significant improvements in classification performance compared to traditional 

machine learning approaches. 

Keywords: Alzheimer’s Disease, missing data imputation, variational autoencoder, heterogeneous tabular data, 

multi-domain fusion 

 

1. Introduction & Related Work 

Alzheimer's Disease (AD) affects millions worldwide, 

making it a  signif icant public health challenge. Early  

diagnosis is crucial for slowing d isease progression and 

improving patient care [1]. The primary challenge in AD 

classification using tabular data is the presence of missing 

values, which can occur when patients miss appointments or 

fail to complete surveys. The common way is to disregard the 

missing data, but that can reduce the effectiveness of AI 

models. So, it is important to employ proper approaches for 

imputing the missing data. Traditional imputation methods, 

such as mean, median, mode and k-nearest neighbors (KNN) 

[2], a  machine learning-based imputation technique, have 

been widely used in medical research to handle missing data. 

However, these methods often fall short in capturing the 

complex relationships among different variables. 

Another challenge is AD classification methods, where 

several studies have explored different machine learning 

models, such as Support Vector Machines (SVM), Random 

Forest, and Gradient Boosting, often paired with imputation 

techniques to handle missing data. While SVM and Random 

Forest have shown promising results, their performance can 

degrade with high-d imensional or heterogeneous data, and 

their computational cost can be high when handling large 

datasets. More recent approaches, like denoising 

autoencoders combined with Random Forest, have improved 

imputation accuracy, but they still face lim itations with 

overfitting and capturing the full complexity of 

comprehensive AD datasets [3]. This highlights the need for 

more robust, deep learning-based models for AD 

classification. 

In this paper, we introduce Alzheimer's Disease 

Classification using X heterogeneous tabular data  types 

(ADxClass), a  novel framework that utilizes Variational 

Autoencoder-based imputation technique and multi-domain 

attention fusion to enhance the classification of AD. The key 

contributions are outlined as follows: 

• We introduce a novel multi-domain attention fusion 

mechanism that systematically integrates cognitive, 

genetic, demographic, and biomarker data. This 

approach utilizes a tetrahedral structure to represent 

modality interactions, enabling the calculation of pair-

wise attention scores between each modality pair. These 

scores dynamically assign weights, allowing the model 

to focus on the most relevant features from each 

modality, enhancing the robustness and accuracy of 

Alzheimer's Disease classification. 

• To address missing data across different data types, we 

employ various imputation techniques. Specifically, for 

biomarker data, we utilize a Variational Autoencoder 

(VAE) based imputation technique and conduct a 

comprehensive comparison with traditional imputation 

methods to evaluate the effectiveness of the VAE-based 

approach. 

 

2. Proposed Method 

In this section, we propose a two-stage network. The first 

stage addresses the imputation of missing data from various 

tabular data types – Biomarker (Bio), Cognitive assessment 

scores (Cog), Demographic data (Demo/DG) and Genetic 

data (Gen), while the second stage incorporates a multi-

domain attention fusion mechanism for AD classif ication 

task. The comprehensive framework is shown in Fig. 1. 
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Fig. 1. Comprehensive Framework of the Proposed Model 

 

2.1 Imputation Methods 

Missing data in medical research, particularly  in  

Alzheimer's Disease studies, is a  common challenge that can 

significantly impact the quality and reliability of the analysis. 

The dataset used in this study exhibits varying degrees of 

missing data across different types. Variables with high  

missing data (over 30%) include crit ical biomarkers like 

hippocampal volume and ventricular size. Moderate missing 

data (10-15%) is observed in cognit ive scores such as MMSE 

and ADAS13. Low missing data (less than 5%) occurs in 

demographic information and genetic data. 

 

 
Fig. 2. Visualization of Demographic Information 

 

Different data types, as shown in the  Fig. 2,3  & 4, show 

unique characteristics that require specific imputation 

strategies. 

 
Fig. 3. Visualization of Cognitive Assessment Scores 

 

• Cognitive Scores: These scores are imputed using mean 

imputation, which is su itable given their central 

tendency and the relatively moderate amount of missing 

data.  

• Genetic Data  (APOE4 Variants): For genetic data, 

mode imputation is primarily used, as these variables are 

categorical and binary.  

• Demographic Variables: Age and education are 

imputed using mean imputation to preserve the central 

tendency. Gender, a  categorical variable, is imputed 

using the mode, ensuring that the demographic profile 

remains accurate and unbiased. 

• Biomarker Data: Due to the complex and interrelated 

nature of biomarker measurements, a  Variational 

Autoencoder (VAE) [4] is employed for imputation. This 

advanced technique effectively captures the underlying 

relationships between brain regions, ensuring accurate 

and consistent imputations even in the presence of 

substantial amount of missing data. 

A binary mask  is created, where each entry 

corresponds to whether a particular biomarker value is 

present (1) or missing (0).  Missing values in the 

biomarker data are initially filled with zeros. This 

standardized initialization is crucial for the VAE to 

process the input data consistently across all samples. 

The input data, now with zeros for missing values, is 

passed through the VAE. The encoder maps the input 

into a latent space, producing a mean  and a log-

variance  for the latent variable. The latent 

variable z is sampled using the reparameterization trick 

and passed through the decoder to reconstruct the 

biomarker data. 

 
Fig. 4. Visualization of Brain Measurements (biomarkers) 

 

 
Fig. 5. Imputation of biomarker using VAE 

 

The VAE’s reconstruction loss is calculated only for the 

original (non-missing) values, as indicated by the mask 𝑚. 

Specifically, the loss is computed as the mean squared error 

(MSE) between the original biomarker data   and the 

reconstructed data  : 

Reconstruction loss =      (1) 

where  is the number of biomarkers,  is the mask 

value for the  biomarker feature. The total loss is 
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computed by combining the reconstruction loss with the KL 

divergence, which regularizes the latent space to approximate 

a standard normal distribution. 

Once the imputation is performed, each data type is 

processed through a fully connected (FC) layer specific to 

that datatype. This step transforms the raw input data into a 

higher-d imensional feature space, making it more suitable for 

subsequent fusion. 

 

2.2 Multi-domain Attention Fusion 

The multi-domain attention fusion mechanism utilizes a 

tetrahedral structure to model the interactions between four 

key modalities:  cognit ive assessments (Cog), demographic 

data (DG), genetic data (Gen), and biomarkers (Bio). Each 

vertex of the tetrahedron represents a modality, and the edges 

connecting these vertices represent pair-wise interactions 

between the modalities. The multi-domain attention fusion is 

represented in figure 6.   

 

 
Fig. 6. Multi-domain Attention Fusion 

(a) represents the 3-D tetrahedral representation.  

(b) represents the 2D-view of the attention fusion 

 

The fusion of modality-specific feature extraction, where 

each modality's input  where  refers to Cog, DG, 

Gen, and Bio are transformed into a high-dimensional feature 

representation  through fully connected layers: 

                                               (2) 

  where represents the transformation function for 

each modality. Then, pair-wise attention scores  are 

computed for each modality pair such as Bio-DG, Bio -Gen, 

Bio-Cog, Cog-Gen, Gen-DG, DG-Cog. These scores are 

calculated by concatenating the feature vectors of each pair 

and passing them through a linear transformation followed 

by a sigmoid activation: 

                                               (3) 

where denotes the concatenated feature vectors 

from modalities  and , while  denotes the learnable 

parameters for that specific pair.      

 To ensure that the attention scores are properly weighted, 

they are normalized across all pairs using a SoftMax 

function: 

 

(4) 

 

where  and  are indices used to iterate over the set of 

all possible pairs of modalities. Th is type of iteration is 

known as combinatorial pairwise iteration [5]. The 

normalization assures that the scores sum to 1, effectively 

distributing the model’s focus proportionately across all 

modality pairs. The normalized attention scores are then used 

to weight the contributions from each modality pair in a 

weighted sum to produce a fused feature representation: 

 
(5) 

This fused representation emphasizes key interactions 

between modalities, integrating information to enhance the 

model's predictive power. Finally, the fused features are 

passed through an output layer to generate the final 

classification decision: 

 (6) 

  where  denotes the function that transforms the fused 

features into a probability distribution across the target 

classes, indicating the likelihood of each class for the given 

input. 

 

3. Experiment Setup and Result Analysis 

3.1 Dataset Overview 

In our study, we utilized the ADNIMERGE data from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

database [6]. The dataset includes biomarkers from T1-

weighted MRI scans (Ventricles, Hippocampus, Whole Brain, 

Entorhinal, Fusiform, MidTemp), genetic p rofiles (APOE4, 

APOE4_0, APOE4_1, APOE4_2 alleles), cognit ive 

assessment scores (CDRSB, ADAS13, MMSE, 

RAVLT_immediate, RAVLT_learning, 

RAVLT_perc_forgetting, FAQ), and demographic 

information (age, education, gender). After excluding 

patients with incomplete diagnoses and APOE4, the final 

dataset includes 6,558 subjects: 2,422 Cognitive Normal 

(CN), 2,717 Mild Cognitive Impairment (MCI), and 1,519 

Alzheimer’s Disease cases. 

 

3.2 Experimental Setup 

ADxClass model was implemented on a computational 

platform with the following specifications: The hardware 

included an NVIDIA A100 Tensor Core graphics processing 

unit featuring Multi-Instance GPU with 7 GB memory. The 

software environment consisted of the PyTorch library, 

utilizing the Adam optimizer with a learning rate set to 

0.0001 for training the neural networks. To prevent 

exploding gradients, gradient clipping was applied during 

backpropagation, ensuring gradients did not exceed a 

maximum norm of 1.0. The model was trained using 

CrossEntropyLoss, with dropout (rate of 0.3) to prevent 

overfitting. For model validation, a 5-fold cross-validation 

approach was employed to rigorously evaluate the model’s 

generalizability across different subsets of the data. 

 

3.3 Result Analysis 

Classification Task: Performance metrics, including 

accuracy, precision, recall, and macro-Area under Curve 

(mAUC), were calculated for each fold and averaged to 

ensure robust evaluation. Most previous studies have 

primarily focused on either binary classification of AD or 

relied on neuroimaging data for AD classification. In contrast, 

we have evaluated our model's classification performance by 

comparing it with a machine learning model, Support Vector 

Machine (SVM), and a  simplest forms of deep learning 

model, Multilayer Perceptron (MLP).  Importantly, we 
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applied the same settings mentioned above to all competing 

models to ensure a fair comparison. Table 1 compares the 

performance of SVM, MLP, and ADxClass models in  

Alzheimer's Disease classification task. ADxClass shows the 

highest mAUC of 0.9877, highlight ing its superior ability to 

distinguish between classes across varying thresholds. 
Table 1. Performance Comparison for AD Classification 

Model Accuracy Precision Recall  mAUC 

SVM 0.8142 0.8168 0.8242 0.8194 

MLP 0.8504 0.8606 0.8433 0.9593 

ADxClass 0.9243 0.9266 0.9213 0.9877 

 

Table 2 shows the resu lts of an ablation study conducted 

to evaluate the contributions of the imputation method and 

multi-domain attention fusion to the ADxClass model’s 

performance. The model’s results were compared across 

three conditions: without imputation, without multi-domain 

attention fusion, and with both components. This analysis 

provides a comprehensive understanding of how each 

component impacts the classification results. 
Table 2: Ablation Study Comparing Model Performance with 

and without Imputation and Multi-Domain Attention Fusion 

Model Accuracy Precision Recall mAUC 

w/o 

imputation 
0.9109 0.9113 0.9104 0.9833 

w/o multi-

domain 

attention 

fusion 

0.8672 0.8751 0.868 0.9695 

With both 0.9243 0.9266 0.9213 0.9877 

 

Effectiveness of VAE imputation for Biomarkers: The VAE-

based imputation method demonstrates superior performance 

compared to other traditional imputation techniques like 

mean, median, and KNN. Figure 7 represents the histogram 

of before and after VAE imputation, where VAE imputation 

results in dist ributions that closely match the original data 

across various biomarkers, suggesting m inimal distortion 

after imputation. 

 
Fig. 7. Comparison of biomarker histograms before & after VAE 

imputation (Blue – Before; Green – After) 

Additionally, the KS (Kolmogorov-Smirnov) test results 

show that VAE consistently achieves the lowest KS statistic, 

indicating that the distributions after VAE imputation are 

more similar to the original data distributions compared to 

those obtained using mean, median, or KNN methods. This 

highlights VAE’s effectiveness in preserving the underlying 

data structure, making it a  more reliable imputation 

technique. 

 
Fig. 8. KS Test Comparison of Different Imputation Techniques 

Across Biomarkers 

4. Conclusion 

The proposed ADxClass framework significantly 

enhances Alzheimer's Disease classification by effectively 

integrating heterogeneous data types through multi-domain 

attention fusion and advanced VAE -based imputation 

techniques. The model outperforms traditional methods, 

demonstrating superior accuracy and robustness in handling 

missing data, which is crucial for reliable disease diagnosis. 

Future work will focus on predicting the progression of 

Alzheimer's Disease, aiming to enhance early intervention 

and personalized treatment strategies. 
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