
ACK 2024 학술발표대회 논문집 (31권 2호)

Performance Analysis of Metric-Based Scaling in

Kubernetes Environments: A Comparative Study of CPU

Utilization and Custom Metric Approaches

Jin-Cheol Jung1
1Dept. of Software Convergence, Kyung-Hee University

bik1111@khu.ac.kr

Abstract

This study compares CPU-based and custom metric-based scaling methods in Kubernetes, showing that custom

metrics tailored to application needs can enhance scalability and efficiency. Findings reveal that, at certain scaling

thresholds under dynamic network traffic, custom metrics reduce average latency by 85% to 87% compared to

CPU-based scaling.

I. INTRODUCTION

Effective resource management is vital in cloud

environments to optimize performance and costs.

Kubernetes’ Horizontal Pod Autoscaler (HPA) scales

applications based on metrics like CPU usage, but it has

limitations with diverse application needs and complex

workloads [1]. These limitations are especially noticeable

when specific metrics, such as request latency, are crucial for

performance. Custom metric-based scaling, using metrics

like network traffic or requests per second, enables more

precise resource allocation suited to application demands,

such as real-time streaming. This study compares CPU-based

and custom metric-based scaling in Kubernetes, showing that

custom metrics can greatly enhance performance and

efficiency, especially in latency-sensitive applications with

dynamic workloads. The goal is to demonstrate how custom

metrics provide an optimized solution for complex cloud

environments.

II. MAIN DISCUSSION

In this section, we conduct a comparative analysis of

Kubernetes scaling strategies using CPU utilization metrics

and custom metrics such as Average Network

Transmit/Receive Bytes, applying various scaling thresholds

for each metric. This analysis evaluates each approach, using

metrics such as 99% tail-latency, and CPU usage as

performance indicators.

II. I. EXPERIMENTAL ENVIRONMENT

The experiment is conducted using two 8-core CPU

servers connected via a 10 Gb Ethernet network, running

Ubuntu 20.04 with the Linux kernel 6.0 and Kubernetes

1.31.0. Container communication is facilitated by the Cilium

[2] CNI plugin.

The cluster comprises two nodes, each with a distinct role

in monitoring CPU utilization during the autoscaling process.

The Master Node generates load using the HTTP load testing

tool, Vegeta [3] (HTTP load testing tool), while

simultaneously measuring 99% tail latency. In contrast, the

Worker Node handles incoming requests, performs pod

autoscaling, and monitors CPU usage.

Mpstat [4] (Performance monitoring benchmark) is

employed as a benchmarking tool to measure CPU utilization,

using the sum of System Time, Soft IRQ, and User Time

metrics as the basis for assessing CPU resource utilization

during autoscaling.

For custom metric-based autoscaling, a Prometheus

Adapter [5] is deployed on the Worker Node, serving as an

intermediary between Prometheus and Kubernetes HPA. This

adapter converts metrics collected from Prometheus into a

format compatible with HPA, enabling it to make scaling

decisions based on custom metrics.

In this study, network usage is evaluated by dividing the

total transmitted and received network bytes on the Worker

Node by the current number of containers. The irate function

is applied to calculate the per-second rate of change based on

the two most recent data points in the time series. This

function automatically adjusts for non-monotonic changes,

such as counter resets, allowing for accurate measurement of

per-container network usage at each autoscaling interval.

 Figure 1. Average 99% Tail-Latency (ms)

- 90 -

ACK 2024 학술발표대회 논문집 (31권 2호)

(a) Network TX Bytes Metric

(b) Network RX Bytes Metric

Figure 2. Average 99% tail-latency (ms)

Nginx is deployed as the performance benchmark, with

HTTP requests increasing from 100 to 104.9 requests per

second. This increment triggers the HPA to scale Pods on the

Worker Node based on predefined thresholds. To assess

scaling performance, CPU utilization thresholds range from

10% to 100% in increments, while Average Network

Transmit and Receive Bytes thresholds are set in various

increments up to 200,000 bytes for transmit and 50,000 bytes

for receive, respectively.

II. II. RESULTS

II. II. I. Average 99% tail-latency

Figure 1 shows the 99th percentile tail latency for

CPU utilization, while Figure 2 displays it for Network

TX/RX Bytes as custom metrics. These figures present

average latency values calculated for each scaling threshold

as request rates rise from 100 to 104.9. For performance

comparison, we calculate mean latency for each threshold

and then assess overall performance by determining the mean,

median, and maximum latency values across all thresholds

for each metric.

1. Mean: Network TX and Network RX metrics

demonstrated approximately 7.9 times and 7.5 times

faster performance compared to CPU utilization

2. Median: Network TX and Network RX metrics

showed approximately 4.3 times and 4.1 times faster

performance than CPU utilization

3. Maximum: Network TX and Network RX metrics

exhibited approximately 13.68 times and 16.84 times

faster performance relative to CPU utilization

Figure 3. Average CPU Usage

(a) Network TX Bytes Metric

(b) Network RX Bytes Metric

Figure 4. Average CPU usage

II. II. II. Average CPU usage

Figures 3 and 4 present the average CPU usage

required to handle request responses at each threshold for

each metric. The analysis yields the following results:

1. Mean: Network TX and Network RX metrics

demonstrate approximately 3.07 times and 3.42 times

more efficient CPU usage compared to CPU utilization

metrics, respectively

2. Median: Network TX and Network RX metrics show

around 3.33 times and 3.81 times greater efficiency in

CPU usage than CPU utilization metrics

3. Maximum: Network TX and Network RX metrics

exhibit roughly 3.72 times and 4.08 times higher

efficiency in CPU usage compared to CPU utilization

metrics

III. CONCLUSION

This study presents a comparative analysis of scaling

metrics based on CPU utilization and network traffic in

Kubernetes environments, emphasizing the need for efficient

scaling using tailored metrics that align with application

characteristics. The results indicate that scaling based on

custom metrics derived from network traffic provides stable

performance and efficient CPU utilization even during traffic

surges. Future research will focus on developing more

sophisticated scaling metrics and algorithms, considering

various workloads and cluster configurations, to enable real-

time prediction and resource optimization.

REFERENCES

[1] Anjaly Parayil et al. "Towards Cloud Efficiency with

Large-scale Workload Characterization",

arXiv:2405.07250v1, 2024

[2] Cilium, https://cilium.io/.

[3] Vegeta, https://github.com/tsenart/vegeta

[4] Mpstat, https://linux.die.net/man/1/mpstat

[5] Prometheus adapter, https://github.com/kubernetes-

sigs/prometheus-adapter

- 91 -

https://cilium.io/
https://github.com/tsenart/vegeta
https://linux.die.net/man/1/mpstat
https://github.com/kubernetes-sigs/prometheus-adapter
https://github.com/kubernetes-sigs/prometheus-adapter

