
ACK 2024 학술발표대회 논문집 (31권 2호)

1. Introduction

Rust has been recently developed as a modern,

safe programming language to defend against

memory vulnerabilities such as buffer overflows

and use-after-frees (UAFs) that for decades have

plagued the legacy software written in C/C++.

Rust achieves memory safety by performing

compile-time and runtime checks along with

having a strong type system that prevents

arbitrary casting. For example, Rust performs

compile-time ownership checks to prevent

temporal memory safety bugs, and enforces

runtime bounds check on dynamic data on top of

compile-time bounds checks on static data to

prevent spatial memory corruption bugs.

Rust was considered as the best way to

develop safe system, resultiing in a wide adoption

from multiple popular applications and systems

such as Firefox, Tor, and Microsoft Windows

operating system. However, due to large size and

complexity of legacy software, the developers

opted in for an adoption strategy that gradually

deploys Rust within the existing code base by

replacing partial components of the application

with Rust, rather than rewriting the whole

software with Rust in a bottom-up fashion.

Naturally, strategy lead to an emergence of

mixed-language applications, where two (or more)

languages are used in development.

Sadly, while such incremental development of

parts of the software with Rust is performed in

order to enhance its security, multiple researches

have pointed out that such strategy instead

다중 언어 어플리케이션에서의
러스트 언어 보호에 대한 연구

유준승1, 카욘도마틴1, 백윤흥2
1서울대학교 전기정보공학부 석박통합과정, 반도체공동연구소

2서울대학교 전기정보공학부 교수, 반도체공동연구소
jsyou@sor.snu.ac.kr, kayondo@snu.ac.kr, ypaek@snu.ac.kr

A Study on Securing Rust in
Mixed-Language Applications

Junseung You1, Martin Kayondo1, Yunheung Paek1
1Dept. of Electrical and Computer Engineering and Inter-University
Semiconductor Research Center (ISRC), Seoul National University

Abstract
For many decades, memory corruption attacks have posed a significant threat to computer
systems, particularly those written in unsafe programming languages such as C/C++. In response,
a ‘safe’ programming language, Rust, was recently developed to prevent memory bugs by using
compile-time and runtime checks. Rust’s security and efficiency has lead its adoption from
multiple popular applications such as Firefox and Tor. Due to the large code base and complexity
of legacy software, the adoption generally takes a form of a gradual deployment, where
security-critical portion of the program is replaced with Rust, resulting in a mixed-language
application. Unfortunately, such adoption strategy introduced a new attack vector that propagates
the vulnerabilities residing in the unsafe languages to Rust, undermining the security guarantees
provided by Rust. In this paper, we shed light on strategies designed to defend against attacks
that target multi-lingual applications to compromise the security of Rust. We study underlying
rationale of various defense mechanisms and design decisions taken to improve their performance
and effectiveness. Furthermore, we explore the limitations of existing defenses and argue that
additional methods are necessary for Rust to fully benefit from its security promises in multi-lan
guage environments.

- 60 -



ACK 2024 학술발표대회 논문집 (31권 2호)

weakeens the security by exposing a new window

for exploitation. Being part of the same program

naturally places the components written in

different languages into a same memory address

space, thereby allowing the vulnerabilities residing

in unsafe components to affect the entire program,

even the parts written in Rust, thereby

undermining the security guarantees that are

expected from its adoption.

In this work, we shed light on strategies that

aim to protect Rust and maintain its security

benefits in presence of components developed in

unsafe programming languages within the single

application. We conduct an in-depth analysis of

existing defense mechanisms and identify that

common, underlying rationale that they advocate

for is isolation of Rust from unsafe components

which quarantines the memory accesses from the

code written in unsafe languages, thus preventing

any vulnerabilities from being propagated to Rust.

More importantly, our analysis reveals that

existing defenses are not bullet-proof, still leaving

out a loophole for exploitation caused by their

design decision to realize isolation at a page level.

We argue that this loophole, while it may seem

small, is critical in safekeeping Rust, and

inevitably necessitates a new mechanism to fully

tighten the security of Rust in mixed-language

environments.

2. Vulnerabilities in Mixed-Language Applications

The root cause of memory vulnerabilities in

mixed-language applications is single memory

address space, shared by both parts written in

different programming languages. While parts

written in Rust is safe from memory bugs, the

counterparts written in C/C++ are still plagued by

them. While the security guarantees of Rust can

be preserved if the bugs in unsafe languages are

contained within the components written in them,

being part of the same application inherently

allows both Rust and C/C++ code to access the

same memory address space, thereby allowing the

bugs in unsafe code to propagate to Rust and

affect its secuirty guarantees. Figure 1 shows an

example of such vulnerability.

pub fn printw(s: &str) -> i32 {

  unsafe {ll:printw(s.to_c_str().as_ptr()) }

}

(Figure 1) Format String Vulnerability.

The example shows an call to the external

library writen in C/C++ (i.e., ll:printw) where the

memory safety of stack objects used by Rust can

be undermined. Specifically, similar to the format

string bug, undefined string conversion parameters

(e.g., printw(“%s%s%s”)) in unsafe language

allows an attacker to read as much information as

they want from the stack.

(Figure 2) Memory Access Rules with Isolation.

3. Defense Mechanism to Protect Rust in Mixed

–Language Applications

Various studies [1, 2, 3, 4] sought to protect

Rust for unsafe languages in multi-lingual

application. While they differ in implementation

details, they all opt for the same design rationale

of isolating Rust from unsafe language by

quarantining (i.e., restricting) unsafe language

from having access to memory used by Rust.

Through isolation, memory bugs in C/C++ are

contained within the isolation boundary, naturally

prohibiting them from being propagated to the

Rust side. Figure 2 depicts the common memory

access behavior from different languages after

enforcment of isolation. Rust code, free of bugs,

is allowed to access any application memory that

consists of both the memory allocated from the

Rust code and the memory allocated from the

unsafe language. On the contrary, unsafe code

(e.g., C/C++ code) is quarantined such that it is

only allowed to access the memory allocated from

- 61 -



ACK 2024 학술발표대회 논문집 (31권 2호)

themselves.

Existing works on isolating Rust differ in their

implementations regarding the analysis of the

isolation boundary and isolation enforcement.

Isolation boundary analysis consists of identifying

and classifying the memory objects to either

Rust-used or C/C++-used. The analysis strategy

can be roughly divided into two directions. The

first direction utilizes static analysis from the

compiler to identify the memory objects.

Specifically, this approach conducts a points-to

analysis to pinpoint the allocation sites of the

objects by traversing the points-to relations

starting from the object access sites. If the object

is accessed from the unsafe language, it is

classified as unsafe, and vice versa for the ones

accessed solely from Rust. The second approach

opts to leverage dynamic profiling for analysis.

Rather than relying on static analysis that may

result false positives or negatives or overappr –

oximation of unsafe objects, they conduct a

preliminary exeuction of the application and mark

the objects that flow into unsafe languages and

classify them as unsafe objects. Isolation strategy

adopted by existing mechanisms are generally in

line with those designed for intra-process

isolation. While a long line of research in that

field offers multiple options, such as software

fault isolation (SFI) and virtualization, that each

have their unique strengths and weaknesses,

recent works on Rust isolation sought assistance

from hardware, namely Memory Protection Keys

(MPK), provided on Intel CPUs. The rationale

behind their choice of MPK for isolation is

straightforward, as MPK demonstrates dominant

performance as memory access restriction is

enforced through hardware and offers lightweight

access permission update through modifying

register accessible in userspace, thus avoiding

costly context switches into the kernel.

4. Security Loophole in Existing Defenses

While isolating Rust from unsafe language

narrows down the attack surface of exploitation,

the existing solutions are not bulletproof. The

first loophole stems from their common design

decision to classify the unsafe objects into a

large, single domain. That is, all objects that are

classified as unsafe are placed into a single

isolated region, where memory bugs such as

overflows within the region (i.e., intra-region

overflow) are considered out-of-scope. Such

single dimensional classification results in

categorizing objects that are accessed both the

Rust and unsafe languages as unsafe objects. As

a result, overflow inside the unsafe region that

modifies the objects that are shared between both

safe and unsafe languages can affect Rust’s

behavior and undermine its security. Figure 3

shows a simplified example of such an attack. In

the example, both x1 and x2 is placed in the

unsafe region, allowing any one of them to

overflow onto the other. As a result, this allows a

vulnerable function that takes pointer to x2 as an

argument to overflow to x1, which can change

the control flow of the Rust code.

fn rust_fn(cb_fptr: fn(&mut i64)) {

  let mut x1 = Box::new();

  let mut x2 = Box::new();

  unsafe { fn( /* pointer to x1 */ ); }

  unsafe { vuln_fn( /* pointer to x2 */ ); }

  if (x1 == ?) {

    ...

  }

}

(Figure 3) Example of Intra-Unsafe Region Overflow.

The second loophole comes from existing

defenses’ common decision to utilize MPK for

isolation. As MPK offeres memory access control

at a page (4KB) granularity, whole object must

be placed in a unsafe region even if only the

subset (or subfield) of the object is actually

accessed by the unsafe language. Consequently,

this allows intra-object overflow to change Rust

code’s behavior and undermine its security. Figure

4 shows an example that can lead to such attack.

- 62 -



ACK 2024 학술발표대회 논문집 (31권 2호)

In this example, the object “Data” is classified as

unsafe and is placed in the unsafe region. Data

has two subfields where the first field holds an

array of values and the second field holds a

function pointer that is later used in Rust code.

Although the first subfield (i.e., array) is needed

by unsafe code, memory bug can overflow the

second subfield and modify the function pointer to

divert the Rust execution flow to non-intended

destination.

fn rust_fn(cb_fptr: fn(&mut i64)) {

  let mut x = Data {

    vals: [1,2,3],

    cb: cb_fptr,

  };

  unsafe{ vuln_fn( /* ptr to x.vals */ ) }

  // cb_fptr is used later on

  (x.cb)(&mut x.vals[0]);

(Figure 4) Example of Intra-Object Overflow.

5. Conclusion

In light of multi-language application that is

developed in both Rust and unsafe languages

such as C/C++, isolation is adopted as a common

rationale to safekeep Rust by preventing memory

bugs in unsafe languages from propagating into

Rust code and undermine its security guarantees.

Existing works narrows down the attack vector

by classifying memory objects to identify the

isolation boundary and enforcing the isolation at a

page granularity efficiently with hardware support

from Intel MPK. Unfortunately, the solutions are

not a panacea as their design decisions inherently

allows intra-region overflows as well as intra

object overflows. This work sheds light on such

loopholes by analyzing the existing mechanisms

and presenting the possible attack scenarios with

concrete examples. We argue that such loopholes

are not to be simply considered as out-of-scope

and urge attention to devise new means to fully

tighten the security to safekeep Rust in multi-lan

guage environments.

References

[1] Bang et. al., TRUST: A Compilation

Framework for In-process Isolation to Protect

Safe Rust aginst Untrusted Code, USENIX

Security Symposium, Anaheim, CA, USA, 2023,

pg.6947-6964

[2] Mergendahl et. al., Cross Language Attacks,

Network and Distributed Systems Security

Symposium, San Diego, CA, USA, 2022

[3] Rivera et. al., Keeping Safe Rust Safe with

Galeed, Annual Computer Security Applications

Conference, Virtual Event, USA, 2021

[4] Kirth et. al., PKRU-Safe: Automatically

Locking Down the Heap Between Safe and

Unsafe Langauges, European Conference on

Computer Systems, Rennes, France, 2022, pg.132

– 148

Acknowledgements

This research was supported by the National

Research Foundation of Korea (NRF) grant

funded by the Korea government, Minitry of

Science and ICT (MSIT) (RS-2023-00277326), the

BK21 FOUR program of the Education and

Research Program for Future ICT Pioneers, Seoul

national University in 2024, and Inter-University

Semiconductor Research Center (ISRC); in part by

the Institute of Information & Technology

Planning & Evaluation (IITP) grant funded by the

Korea government (MSIT) (RS-2024-00438729,

Development of Full Lifecycle Privacy-Preserving

Techniques using Anonymized Confidential

Computing); and in part by Korea Planning &

Evaluation Institute of Industrial Technology

(KEIT) grant funded by the Korea governement

(MOTIE) (No. RS-2024-00406121, Development of

an Automotive Security Vulnerability-based

Thread Analysis System (R&D)); and in part by

IITP under the artificial intelligence semiconductor

support program to nurture the best talents

(IITP-2023-RS-2023-00256081) grant funded by

the Korea government (MSIT).

- 63 -




