DOI QR코드

DOI QR Code

A Survey on Homomorphic Encryption Acceleration Technology for Secure Computing

Secure Computing 을 위한 동형암호 가속기 연구에 대한 조망

  • Heonhui Jung (Dept. of Electrical and Computer Engineering and Inter-University Semiconductor Research Center (ISRC), Seoul National University) ;
  • Kevin Nam (Dept. of Electrical and Computer Engineering and Inter-University Semiconductor Research Center (ISRC), Seoul National University) ;
  • ;
  • Yun-Heung Paek (Dept. of Electrical and Computer Engineering and Inter-University Semiconductor Research Center (ISRC), Seoul National University)
  • 정헌희 (서울대학교 전기정보공학부, 반도체 공동연구소) ;
  • 남기빈 (서울대학교 전기정보공학부, 반도체 공동연구소) ;
  • 이동주 (서울대학교 전기정보공학부, 반도체 공동연구소) ;
  • 백윤흥 (서울대학교 전기정보공학부, 반도체 공동연구소)
  • Published : 2024.10.31

Abstract

증가하는 클라우드 서비스에 대한 보안 위협에 대응하기 위해 데이터를 암호화한 상태로 연산을 수행하는 동형암호에 대한 연구가 활발히 진행되고 있다. 동형암호는 암호화된 상태로 처리를 진행하기에 데이터 유출 위협으로부터 자유로우나, 210 차 이상의 다항식에 대해 연산을 수행해야 되기에 많은 양의 연산 자원과 메모리 자원을 필요로 한다. 본 논문에서는 이러한 동형암호 연산의 특성과 이를 실용적으로 사용하기 위한 가속기 개발 연구들에 대해 서술하였다.

Keywords

Acknowledgement

이 논문은 2024 년도 BK21 FOUR 정보기술 미래인재교육연구단에 의하여 지원되었으며, 2024 년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (RS-2023-00277326).

References

  1. J. -W. Lee et al., "Privacy-Preserving Machine Learning With Fully Homomorphic Encryption for Deep Neural Network," in IEEE Access, vol. 10, pp. 30039-30054, 2022 
  2. 2024 년 데이터 유출 비용 보고서", IBM, 2024 년 9월 18 일 접속, https://www.ibm.com/kr-ko/reports/data-breach 
  3. Eric Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.3" in Internet Engineering Task Force (IETF) RFC, RFC8446, https://www.rfceditor.org/info/rfc8446, 2018 
  4. Ilaria Chillotti, Nicolas Gama, Mariya Georigieva, and Malika Iz-abach'ene. Tfhe: Fast fully homomorphic encryption over the torus. (2018). https://ia.cr/2018/421 
  5. Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for arithmetic of approximate numbers. Cryptology ePrint Archive, Report 2016/421, (2016). https://ia.cr/2016/421. 
  6. Kim, A., Song, Y., Kim, M. et al. Logistic regression model training based on the approximate homomorphic encryption. BMC Med Genomics 11 (Suppl 4), 83 (2018). https://doi.org/10.1186/s12920-018-0401-7 
  7. Yongwoo Lee, Joonwoo Lee, Young-Sik Kim, HyungChul Kang, and Jong-Seon No. 2020. High-Precision and Low-Complexity Approximate Homomorphic Encryption by Error Variance Minimization. IACR Cryptology ePrint Archive 1549 (2020) 
  8. Over 100x Faster Bootstrapping in Fully Homomorphic Encryption through Memory-centric Optimization with GPUs. (2021). IACR Transactions on Cryptographic Hardware and Embedded Systems, 2021(4), 114-148. 
  9. Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald Dreslinski, Christopher Peikert, and Daniel Sanchez. 2021. F1: A Fast and Programmable Accelerator for Fully Homomorphic Encryption. In MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO '21). Association for Computing Machinery, New York, NY, USA, 238-252. https://doi.org/10.1145/3466752.3480070 
  10. Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Nathan Manohar, Nicholas Genise, Srinivas Devadas, Karim Eldefrawy, Chris Peikert, and Daniel Sanchez. 2022. CraterLake: a hardware accelerator for efficient unbounded computation on encrypted data. In Proceedings of the 49th Annual International Symposium on Computer Architecture (ISCA '22). Association for Computing Machinery, New York, NY, USA, 173-187. https://doi.org/10.1145/3470496.3527393 
  11. Sangpyo Kim, Jongmin Kim, Michael Jaemin Kim, Wonkyung Jung, John Kim, Minsoo Rhu, and Jung Ho Ahn. 2022. BTS: an accelerator for bootstrappable fully homomorphic encryption. In Proceedings of the 49th Annual International Symposium on Computer Architecture (ISCA '22). Association for Computing Machinery, New York, NY, USA, 711-725. https://doi.org/10.1145/3470496.3527415 
  12. JEDEC, High Bandwidth Memory (HBM) DRAM, JEDEC Standard, JESD235D, (2020) 
  13. H. Nejatollahi, S. Gupta, M. Imani, T. S. Rosing, R. Cammarota and N. Dutt, "CryptoPIM: In-memory Acceleration for Lattice-based Cryptographic Hardware," 2020 57th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 2020, pp. 1-6, doi: 10.1109/DAC18072.2020.9218730. 
  14. Saransh Gupta, Rosario Cammarota, and Tajana Simunic. 2024. MemFHE: End-to-end Computing with Fully Homomorphic Encryption in Memory. ACM Trans. Embed. Comput. Syst. 23, 2, Article 28 (March 2024), 23 pages. https://doi.org/10.1145/3569955