DOI QR코드

DOI QR Code

Parametric modeling of walls based on voxels of slices and line segment detection

  • Ximing Sun (Department of Civil Engineering, Tsinghua University) ;
  • Xiaodong Li (Department of Civil Engineering, Tsinghua University) ;
  • Jiayu Chen (Department of Civil Engineering, Tsinghua University)
  • 발행 : 2024.07.29

초록

Building Information Model (BIM) is increasingly being used in the research of construction. The demand for low-cost and efficient access to architectural models is also on the rise. However, generating a parametric model from a point cloud will face interference from other facilities and will be affected by the quality of the measured point cloud. This paper describes a method for generating parametric models from laser-scanned point clouds. With slice voxel selection and line segment detection, the structural framework of the walls can be quickly extracted. By reducing the impact of missing furniture and data on the room, the new approach is applicable to most raw point clouds. This method has potential in multiple directions such as rapid BIM modeling, large-scale room reconstruction, and robot spatial perception.

키워드

참고문헌

  1. S. Lidelow, S. Engstrom, O. Samuelson, The promise of BIM? Searching for realized benefits in the Nordic architecture, engineering, construction, and operation industries, Journal of Building Engineering 76 (2023).
  2. M. Belsky, R. Sacks, I. Brilakis, Semantic enrichment for building information modeling, Computer-Aided Civil and Infrastructure Engineering 31 (4) (2016) 261-274.
  3. Y. Xie, M.X. Teo, S. Li, L. Huang, N. Liang, Y. Cai, As-built BIM reconstruction of piping systems using smartphone videogrammetry and terrestrial laser scanning, Automation in Construction 156 (2023).
  4. F. Bosche, M. Ahmed, Y. Turkan, C.T. Haas, R. Haas, The value of integrating Scan-to-BIM and Scan-vs-BIM techniques for construction monitoring using laser scanning and BIM: The case of cylindrical MEP components, Automation in Construction 49 (2015) 201-213.
  5. H. Tran, K. Khoshelham, Procedural Reconstruction of 3D Indoor Models from Lidar Data Using Reversible Jump Markov Chain Monte Carlo, Remote Sensing 12 (5) (2020).
  6. H. Si, X. Wei, Feature extraction and representation learning of 3D point cloud data, Image and Vision Computing 142 (2024).
  7. Q. Qiu, M. Wang, J. Guo, Z. Liu, Q. Wang, An adaptive down-sampling method of laser scan data for scan-to-BIM, Automation in Construction 135 (2022).
  8. L. Yang, J.C.P. Cheng, Q. Wang, Semi-automated generation of parametric BIM for steel structures based on terrestrial laser scanning data, Automation in Construction 112 (2020).
  9. B. Wang, C. Yin, H. Luo, J.C.P. Cheng, Q. Wang, Fully automated generation of parametric BIM for MEP scenes based on terrestrial laser scanning data, Automation in Construction 125 (2021).
  10. A. Adan, B. Quintana, S.A. Prieto, F. Bosche, Scan-to-BIM for 'secondary' building components, Advanced Engineering Informatics 37 (2018) 119-138.
  11. Q. Wang, J. Li, X. Tang, X. Zhang, How data quality affects model quality in scan-to-BIM: A case study of MEP scenes, Automation in Construction 144 (2022).
  12. S. Nikoohemat, A.A. Diakite, S. Zlatanova, G. Vosselman, Indoor 3D reconstruction from point clouds for optimal routing in complex buildings to support disaster management, Automation in Construction 113 (2020).
  13. Z. Li, J. Shan, RANSAC-based multi primitive building reconstruction from 3D point clouds, ISPRS Journal of Photogrammetry and Remote Sensing 185 (2022) 247-260.
  14. S. Tang, X. Li, X. Zheng, B. Wu, W. Wang, Y. Zhang, BIM generation from 3D point clouds by combining 3D deep learning and improved morphological approach, Automation in Construction 141 (2022).
  15. H. Fang, F. Lafarge, C. Pan, H. Huang, Floorplan generation from 3D point clouds: A space partitioning approach, ISPRS Journal of Photogrammetry and Remote Sensing 175 (2021) 44-55.
  16. S. Ochmann, R. Vock, R. Wessel, R. Klein, Automatic reconstruction of parametric building models from indoor point clouds, Computers & Graphics 54 (2016) 94-103.
  17. M. Kim, D. Lee, Automated two-dimensional geometric model reconstruction from point cloud data for construction quality inspection and maintenance, Automation in Construction 154 (2023).
  18. R.Q. Charles, H. Su, M. Kaichun, L.J. Guibas, PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 77-85.
  19. Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, A. Markham, RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 11105-11114.
  20. Y. Xu, W. Tang, Z. Zeng, W. Wu, J. Wan, H. Guo, Z. Xie, NeiEA-NET: Semantic segmentation of large-scale point cloud scene via neighbor enhancement and aggregation, International Journal of Applied Earth Observation and Geoinformation 119 (2023).
  21. P. Mukhopadhyay, B.B. Chaudhuri, A survey of Hough Transform, Pattern Recognition 48 (3) (2015) 993-1010.
  22. C. Akinlar, C. Topal, EDLines: A real-time line segment detector with a false detection control, Pattern Recognition Letters 32 (13) (2011) 1633-1642.
  23. N. Xue, T. Wu, S. Bai, F. Wang, G.-S. Xia, L. Zhang, P.H. Torr, Holistically-attracted wireframe parsing, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 2788-2797.
  24. Q.-Y. Zhou, J. Park, V. Koltun, Open3D: A modern library for 3D data processing, arXiv preprint arXiv:1801.09847 (2018).