DOI QR코드

DOI QR Code

A framework for 4D analysis of construction safety using a Site Information Model

  • Jongwoo CHO (Division of Architecture & Urban Design, Incheon National University) ;
  • Jiyu SHIN (Division of Architecture & Urban Design, Incheon National University) ;
  • Tae Wan KIM (Division of Architecture & Urban Design, Incheon National University)
  • Published : 2024.07.29

Abstract

This study introduces a comprehensive framework for 4D safety analysis in construction site layout planning (CSLP), using a Site Information Model (SIM) environment to enhance spatial hazard identification and effectively integrate it with activity-based safety management. The framework, grounded in a continuous-space layout approach, accurately positions objects to mirror temporary facilities' actual boundaries, incorporating spatial relationships and inherent safety hazards. It also features rasterization to translate layouts into a grid system. Central to this framework are three modules for spatial hazard identification: Visibility Analysis, Spatial Hazard Mapping, and Travel Path Analysis, designed to identify less visible spaces, assess spatial hazards, and simulate optimal travel paths considering safety aspects. By applying this framework to case studies of a residential complex and a commercial office project, the research demonstrates its practical utility in improving visibility and spatial hazard assessment, despite the inherently complex dynamics of construction sites. The study acknowledges challenges, such as the reliance on safety managers' experiential knowledge for setting hazard parameters and the need for further development in integrating these insights with activity-based safety management. It underscores the framework's significant potential to advance construction safety management by offering a method to preemptively recognize and mitigate spatial hazards. The approach promises not only to contribute to accident prevention but also to enhance overall project performance by incorporating spatial and temporal dimensions of safety into CSLP. This research marks a significant step toward a more holistic and integrated approach to construction safety, highlighting the importance of continuous improvement and adaptation in safety practices.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2021R1A2C1013188)

References

  1. U.S. Bureau of Labor Statistics (BLS), Census of Fatal Occupational Injuries, IIF Home US Bur. Labor Stat. (2023). https://www.bls.gov/iif/home.htm (accessed December 11, 2023).
  2. H.M. Sanad, M.A. Ammar, M.E. Ibrahim, Optimal Construction Site Layout Considering Safety and Environmental Aspects, J. Constr. Eng. Manag. 134 (2008) 536-544. https://doi.org/10.1061/(ASCE)0733-9364(2008)134:7(536).
  3. F. Sadeghpour, M. Andayesh, The constructs of site layout modeling: an overview, Can. J. Civ. Eng. 42 (2015) 199-212. https://doi.org/10.1139/cjce-2014-0303.
  4. G.M. Winch, S. North, Critical Space Analysis, J. Constr. Eng. Manag. 132 (2006) 473-481. https://doi.org/10.1061/(ASCE)0733-9364(2006)132:5(473).
  5. A. AlSaggaf, A. Jrade, ArcSPAT: an integrated building information modeling (BIM) and geographic information system (GIS) model for site layout planning, Int. J. Constr. Manag. 23 (2023) 505-527. https://doi.org/10.1080/15623599.2021.1894071.
  6. T.A. Saurin, C.T. Formoso, L.B.M. Guimaraes, Safety and production: an integrated planning and control model, Constr. Manag. Econ. 22 (2004) 159-169. https://doi.org/10.1080/0144619042000201367.
  7. O. Rozenfeld, R. Sacks, Y. Rosenfeld, H. Baum, Construction Job Safety Analysis, Saf. Sci. 48 (2010) 491-498. https://doi.org/10.1016/j.ssci.2009.12.017.
  8. F.J. Forteza, A. Sese, J.M. Carretero-Gomez, CONSRAT. Construction sites risk assessment tool, Saf. Sci. 89 (2016) 338-354. https://doi.org/10.1016/j.ssci.2016.07.012.
  9. A. Pinto, QRAM a Qualitative Occupational Safety Risk Assessment Model for the construction industry that incorporate uncertainties by the use of fuzzy sets, Saf. Sci. 63 (2014) 57-76. https://doi.org/10.1016/j.ssci.2013.10.019.
  10. S. Winge, E. Albrechtsen, B.A. Mostue, Causal factors and connections in construction accidents, Saf. Sci. 112 (2019) 130-141. https://doi.org/10.1016/j.ssci.2018.10.015.
  11. P.M. Farmakis, A.P. Chassiakos, Genetic algorithm optimization for dynamic construction site layout planning, Organ. Technol. Manag. Constr. Int. J. 10 (2018) 1655-1664. https://doi.org/10.1515/otmcj-2016-0026.
  12. S. RazaviAlavi, S. AbouRizk, Site Layout and Construction Plan Optimization Using an Integrated Genetic Algorithm Simulation Framework, J. Comput. Civ. Eng. 31 (2017) 04017011. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000653.
  13. F. Sadeghpour, O. Moselhi, S.T. Alkass, Computer-Aided Site Layout Planning, J. Constr. Eng. Manag. 132 (2006) 143-151. https://doi.org/10.1061/(ASCE)0733-9364(2006)132:2(143).
  14. A. Khalafallah, K. El-Rayes, Minimizing Construction-Related Hazards in Airport Expansion Projects, J. Constr. Eng. Manag. 132 (2006) 562-572. https://doi.org/10.1061/(ASCE)0733-9364(2006)132:6(562).
  15. X. Ning, J. Qi, C. Wu, A quantitative safety risk assessment model for construction site layout planning, Saf. Sci. 104 (2018) 246-259. https://doi.org/10.1016/j.ssci.2018.01.016.
  16. H. Li, X. Yang, M. Skitmore, F. Wang, P. Forsythe, Automated classification of construction site hazard zones by crowd-sourced integrated density maps, Autom. Constr. 81 (2017) 328-339. https://doi.org/10.1016/j.autcon.2017.04.007.
  17. M. Abune'meh, R. El Meouche, I. Hijaze, A. Mebarki, I. Shahrour, Optimal construction site layout based on risk spatial variability, Autom. Constr. 70 (2016) 167-177. https://doi.org/10.1016/j.autcon.2016.06.014.
  18. M. Kim, Y. Ham, C. Koo, T.W. Kim, Simulating travel paths of construction site workers via deep reinforcement learning considering their spatial cognition and wayfinding behavior, Autom. Constr. 147 (2023) 104715. https://doi.org/10.1016/j.autcon.2022.104715.
  19. Digital Twin National Land, V-WORLD OpenAPI [Website], V-WORLD (2023). https://www.vworld.kr/dev/v4api.do (accessed December 27, 2023).
  20. M. Kim, H.-G. Ryu, T.W. Kim, A Typology Model of Temporary Facility Constraints for Automated Construction Site Layout Planning, Appl. Sci. 11 (2021) 1027. https://doi.org/10.3390/app11031027.
  21. B. Hillier, Space is the machine: a configurational theory of architecture, Electronic ed., Space Syntax, London, UK, 2007. https://discovery.ucl.ac.uk/id/eprint/3881/ (accessed December 27, 2023).