DOI QR코드

DOI QR Code

Identification of Social Conflict Stakeholders in Public Infrastructure Projects using ChatGPT

  • Do Namgoong (Department of Civil and Environmental Engineering, Yonsei University) ;
  • Seung H. Han (Department of Civil and Environmental Engineering, Yonsei University)
  • Published : 2024.07.29

Abstract

Social conflict surrounding public infrastructure projects has grown because of increasing project complexity and accelerated conflict propagation. This social conflict stems from various concerns ranging from environmental issues to regulatory and compliance requirements resulting in the intervention of various stakeholders with different interests. Against this backdrop, understanding the stakeholders involved and their dynamics is crucial for effective project management and smooth implementation of the project. Therefore, this paper introduces an analytical process utilizing ChatGPT to automatically identify stakeholders involved in the social conflict surrounding the public infrastructure project from news articles. As a result, a stakeholder network is constructed to delve into the complex stakeholder interrelationships and identify key stakeholders of the specific period. To explore the potential of the proposed process, an experimental case study of the Jeju 2nd Airport project, which suffered from a high level of social conflict, was conducted. The proposed process enables timely analysis of the conflict situation which is crucial for successful conflict management. This study highlights the significance of a systemic approach to timely stakeholder analysis, setting the groundwork for a quantitative and up-to-date investigation of social conflicts around public infrastructure projects.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2022R1A2C1012018).

References

  1. J. Eweje, R. Turner, and R. Muller, "Maximizing strategic value from megaprojects: The influence of information-feed on decision-making by the project manager", Int. J. Proj. Manag., vol. 30, no. 6, pp. 639-651, 2012, doi: 10.1016/j.ijproman.2012.01.004.
  2. J. Ninan, A. Mahalingam, and S. Clegg, "Power in news media: Framing strategies and effects in infrastructure projects", Int. J. Proj. Manag., vol. 40, no. 1, pp. 28-39, 2022, doi: 10.1016/j.ijproman.2021.09.003.
  3. D. Namgoong, J. Lee, S. Baek, W. J. Woo, C. Lee, and S. H. Han, "Sentiment Analysis Model For Public Construction Projects Using KoBERT", Proc. Creative Constr. Conf. 2023, pp. 359-366, 2023, doi: 10.3311/ccc2023-048.
  4. C. Lee, J. W. Won, W. Jang, W. Jung, S. H. Han, and Y. H. Kwak, "Social conflict management framework for project viability: Case studies from Korean megaprojects", Int. J. Proj. Manag., vol. 35, no. 8, pp. 1683-1696, 2017, doi: 10.1016/j.ijproman.2017.07.011.
  5. M. T. R. Laskar, M. S. Bari, M. Rahman, M. A. H. Bhuiyan, S. Joty, and J. X. Huang, "A Systematic Study and Comprehensive Evaluation of ChatGPT on Benchmark Datasets", arXiv, 2023, doi: 10.48550/arxiv.2305.18486.
  6. B. Lamichhane, "Evaluation of ChatGPT for NLP-based Mental Health Applications", arXiv, 2023, doi: 10.48550/arxiv.2303.15727.
  7. S. Olander, "Stakeholder impact analysis in construction project management", Constr. Manag. Econ., vol. 25, no. 3, pp. 277-287, 2007, doi: 10.1080/01446190600879125.
  8. A. A. Elias, "A system dynamics model for stakeholder analysis in environmental conflicts", J. Environ. Plan. Manag., vol. 55, no. 3, pp. 387-406, 2012, doi: 10.1080/09640568.2011.604191.
  9. T. H. Y. Li, S. T. Ng, and M. Skitmore, "Evaluating stakeholder satisfaction during public participation in major infrastructure and construction projects: A fuzzy approach", Autom. Constr., vol. 29, pp. 123-135, 2013, doi: 10.1016/j.autcon.2012.09.007.
  10. J. Lienert, F. Schnetzer, and K. Ingold, "Stakeholder analysis combined with social network analysis provides fine-grained insights into water infrastructure planning processes", J. Environ. Manag., vol. 125, pp. 134-148, 2013, doi: 10.1016/j.jenvman.2013.03.052.
  11. K. Y. Mok, G. Q. Shen, and R. J. Yang, "A network theory-based analysis of stakeholder issues and their interrelationships in large construction projects: a case study", Int. J. Constr. Manag., vol. 17, no. 3, pp. 210-227, 2017, doi: 10.1080/15623599.2016.1187246.
  12. J. Xue, G. Q. Shen, R. J. Yang, I. Zafar, and E. M. A. C. Ekanayake, "Dynamic Network Analysis of Stakeholder Conflicts in Megaprojects: Sixteen-Year Case of Hong Kong-Zhuhai-Macao Bridge", J. Constr. Eng. Manag., vol. 146, no. 9, 2020, doi: 10.1061/(asce)co.1943-7862.0001895.
  13. M. Kovacevic, J.-Y. Nie, and C. Davidson, "Providing Answers to Questions from Automatically Collected Web Pages for Intelligent Decision Making in the Construction Sector", J. Comput. Civ. Eng., vol. 22, no. 1, pp. 3-13, 2008, doi: 10.1061/(asce)0887-3801(2008)22:1(3).
  14. E. Ferrara, P. D. Meo, G. Fiumara, and R. Baumgartner, "Web data extraction, applications and techniques: A survey", Knowl.-Based Syst., vol. 70, pp. 301-323, 2014, doi: 10.1016/j.knosys.2014.07.007.
  15. I. Mele, S. A. Bahrainian, and F. Crestani, "Event mining and timeliness analysis from heterogeneous news streams", Inf. Process. Manag., vol. 56, no. 3, pp. 969-993, 2019, doi: 10.1016/j.ipm.2019.02.003.
  16. X. Wei, X. Cui, N. Cheng, X. Wang, X. Zhang, S, Huang, P. Xie, J. Xu, Y. Chen, M. Zhang, Y. Jiang, W. Han, "Zero-Shot Information Extraction via Chatting with ChatGPT", arXiv, 2023, doi: 10.48550/arxiv.2302.10205.
  17. L. Ouyang, J. Wu, X, Jiang, D. Almeida, C.L. Wainwright, P. Mishkin, C.Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F.Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. Christiano, J. Leike, R. Lowe, "Training language models to follow instructions with human feedback", arXiv, 2022, doi: 10.48550/arxiv.2203.02155.
  18. B. Li, G. Fang, Y. Yang, Q. Wang, W. Ye, W. Zhao, S. Zhang, "Evaluating ChatGPT's Information Extraction Capabilities: An Assessment of Performance, Explainability, Calibration, and Faithfulness", arXiv preprint arXiv:2304.11633.
  19. N. Barlaug and J. A. Gulla, "Neural Networks for Entity Matching: A Survey", ACM Trans. Knowl. Discov. Data (TKDD), vol. 15, no. 3, pp. 1-37, 2021, doi: 10.1145/3442200.
  20. A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, "Duplicate Record Detection: A Survey", IEEE Trans. Knowl. Data Eng., vol. 19, no. 1, pp. 1-16, 2007, doi: 10.1109/tkde.2007.250581.
  21. S. Wasserman and K. Faust, "Social Network Analysis: Methods and Applications", Cambridge: Cambridge University Press, 1994.
  22. M. Loosemore, "Social network analysis: using a quantitative tool within an interpretative context to explore the management of construction crises", Eng. Constr. Arch. Manag., vol. 5, no. 4, pp. 315-326, 1998, doi: 10.1046/j.1365-232x.1998.54039.x.
  23. E. Newman, R. Fletcher, D. A. L. Levy, and R. K. Nielsen, "Reuters Institute Digital News Report 2018", Reuters Institute for the Study of Journalism, University of Oxford, Oxford, U.K., Tech. Rep., 2018. [Online]. Available: http://www.digitalnewsreport.org/