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Abstract:  

Sand is a vital component within a concrete admixture for variety of structures and is classified as 

one of the crucial bulk material used. Assessing the Fineness Modulus (FM) of sand is an essential part 

of concrete production process because FM significantly affects the workability, cost-effectiveness, 

porosity, and concrete strength. Traditional sand quality inspection methods, like Sieve Analysis Test, 

are known to be laborious, time-consuming, and cost ineffective. Previous studies had mainly focused 

on measuring the physical characteristics of individual sand particles rather than real-time quality 

assessment of sand, particularly its FM during concrete production. This study introduces an image-

based method for detecting flawed sand through deep learning techniques to evaluate the quality of sand 

used in concrete. The method involves categorizing sand images into three groups (Unavailable, Stable, 

Dangerous) and seven types based on FM. To achieve a high level of generalization ability and 

computational efficiency, various deep learning architectures (VGG16, ResNet-101 and MobileNetV3 

small), were evaluated and chosen; with the inclusion of transfer learning to ensure model accuracy. A 

dataset of labeled sand images was compiled. Furthermore, image augmentation techniques were 

employed to effectively enlarge this dataset. The models were trained using the prepared dataset that 

were categorized into three discrete groups. A comparative analysis of results was performed based on 

classification performance metrics which identified the VGG16 model as the most effective achieving 

an impressive 99.87% accuracy in identifying flawed sand. This finding underscores the potential of 

deep learning techniques for assessing sand quality in terms of FM; positioning this research as a 

preliminary investigation into this topic of study. 
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1. INTRODUCTION 

Concrete, a fundamental material in construction, is extensively used for a variety of structures, 

including buildings, bridges, and more [1]. As a composite material, concrete consists of water, cement, 

sand and other components such as crushed stone or gravel. Sand, constituting for approximately 35% 

of concrete's volume, is a critical component that directly influences the concrete's workability, porosity, 

permeability, strength, compaction, and durability [2]. 

In the production of concrete, various sand sizes are observed during the construction phase due to 

the diverse geological compositions according to regions that leads to natural variations in grain size. 

These differences arise from local rock types that contribute to distinct sizes and characteristics of sand 

particles upon weathering. The quality of concrete is closely linked to these factors, as the uniformity 

of sand particle distribution significantly affects the interaction strength within the materials’ matrix [3, 

4]. Concretes’ compaction is enhanced by a well-graded distribution of sand particles which is crucial 
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to promote effective inter-particle interactions improving its mechanical strength [5]. Conversely, 

inadequate particle size distribution can disrupt the formation of a stable internal framework, adversely 

affecting the concrete's overall performance [6]. 

Assessing sands’ grain size primarily relies on sieve analysis tests that calculate its particle size 

distribution (PSD) classified according to international standard, called American Society for Testing 

and Materials (ASTM) C33, by which it calculates the FM describing the particle size distribution of 

sand [7]. However, such sieve analysis is time consuming, labor intensive and also prone to breaking of 

sand particles that clogs the sieve meshes during testing. This process may affect the measurement 

results of the PSD [8]. More importantly, this method lacks representativeness and cannot provide real-

time feedback on the granular parameters during the sand-making process resulting in time lag. Given 

these variables, the FM of sand may vary with each batch of concrete produced and corresponds to 

uncertainty that can lead to lower quality of concrete [9]. 

As mentioned previously, in the construction industry, sand grain sizes are typically determined using 

sieve analysis tests. Despite its widespread use, sieve analysis has its disadvantages; it is a time 

consuming and laborious process that often requires manual sieving or the use of mechanical shakers 

[8]. This is particularly challenging when processing numerous samples or when precise measurements 

are essential. Additionally, sieves must be meticulously cleaned between uses to avoid cross-

contamination. Moreover, samples often need specific preparation, such as drying, prior to analysis [10]. 

Computer vision techniques, particularly those involving deep learning, offer a revolutionary 

approach to automatic image analysis. Advancements in this technology, especially Convolutional 

Neural Networks (CNN), are notable for their high generalization ability supported by the training of 

billions of parameters and a substantial volume of annotated datasets. CNN excel in processing images 

rich in information by efficiently extracting and elevating features from low-level to high-level within 

their network structures  [11]. 

In sand grain analysis, Kim et al. applied CNN to differentiate six sand grain types in two-dimensional 

grayscale images. In this study, accurate classification based on attributes, such as: roundness and 

sphericity, are challenging to discern with the naked eye. Despite the challenges, the results achieved an 

average classification accuracy of 98.24% [12]. Another study by Li & Iskandar devised a dynamic image 

analysis method which produced higher accuracy when assessing sand grain size and shape parameters 

compared to traditional methods [13]. Despite these advances, prior research has predominantly 

concentrated on quantifying the shape and size of individual sand particles. In particular, limited focus 

was on real-time quality assessment of sand from the perspective of FM during concrete production. 

This paper introduces a deep learning-based technique for evaluating the FM of sand, designed to 

rapidly and precisely categorize sand quality. Such an approach could demonstrate dependable accuracy 

and significantly benefit the performance of concrete resulting in a sustainable and cost-effective 

production of construction materials. 

2. MATERIAL AND METHODS 

2.1. Standards for fineness modulus of sand for concrete 

The calculation of FM follows the ASTM C33 standard, which involves conducting sieve analysis 

using ten different sizes of standard sieves (namely 9.5 mm, 4.75 mm, 2.36 mm, 1.18 mm, 0.6 mm, 0.3 

mm, 0.15 mm and 0.075mm) on sand samples. The FM value of the sand samples are obtained by 

summing up the mass percentage retained on each sieve and then dividing by 100 according to the 

formula below. This method, representing the average size of sand grains, intuitively reflects the particle 

distribution of the sample sand [14]. 

FM = 
∑ Cumulative percent retained on each sieve

100
(1) 

In the production of concrete, the typical FM range for sand grains commonly used is between 2.3 

and 3.1. This range is crucial for the workability, strength, and durability of concrete. FM values below 

2.3 may lead to decreased workability of concrete and have a negative impact on its strength. On the 

other hand, FM values above 3.1 may produce overly coarse concrete particles, which can negatively 

influence the concretes’ strength and durability [15, 16]. Various international standards and guidelines, 

such as the ASTM C33 standard and India's IS 383, have set forth acceptable FM ranges for concrete 
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sand, typically between 2.3 and 3.1, to maintain aggregate quality and grading. However, the European 

standard BS EN 12620 does not specify an FM range [17]. 

This study adopts the Korean standard KS F 2527, as shown in Table 1, which explicitly defines the 

FM range for concrete-use sand. Based on workability and strength requirements, sand with an FM less 

than 2.3, between the range 2.3 to 3.1 and greater than 3.1 is defined as ‘Unavailable’, ‘Stable’ and 

‘Dangerous’, respectively. Since this study aims to build a sand dataset based on FM for data analysis, 

sand samples' FM is divided into seven different types according to normal distribution. This 

classification assists in reducing data bias and accurately reflect the granularity distribution 

characteristics of sand in each image. 

 

Table 1. FM range for concrete-use sand 

 

2.2. Construction of dataset 

This study utilizes a portion of the construction sand quality management dataset provided by the 

Korea Institute of Geoscience and Mineral Resources [18]. It is comprised of 1,000 sand samples from 

80 regions in Korea. Conducted in a laboratory setting, according to the KSF257 standard, each sand 

sample was subjected to sieve analysis and then captured using a high-magnification camera under a 

constant distance and environmental conditions to ensure the reliability of the data collected. The study 

collected and processed 1400 raw images with a resolution of 1000 x1000 categorizing them into three 

groups and seven types mentioned previously. 

In CNN applications, images transformed through data augmentation processes, such as rotation and 

flipping, are recognized as entirely distinct. A practice widely adopted to significantly enhance CNN 

performance [12]. Therefore, data enhancement techniques such as horizontal flip, vertical flip, blur 

effect, rotation, gamma transformation and noise addition were used in this research to ensure diversity, 

as shown in Figure 1. Additionally, individual images were resized to 224x224 resolution to meet the 

input format requirements for CNN-based models. 

 

Fig 1. Data augmentation methods 

 

As shown in Figure 3, the dataset, original and augmented datasets consisted of 9,800 images that 

were randomly split into training, validation and test sets in proportions of 60%, 20%, and 20%, 

respectively. The model performed training with the training set. From the training results, the model 

Group Type Scope Granularity distribution characteristics of sand 

Unavailable 
Type 1 FM < 1.4 Fine-Dominant 

Type 2 1.4 ≤ FM < 2.3 Mostly Fine, Some Neutral 

Stable 

Type 3 2.3 ≤ FM < 2.6 Partially Fine-Dominant, Normal Distribution 

Type 4 2.6 ≤ FM < 2.8 Normal Distribution 

Type 5 2.8 ≤  FM ≤ 3.1 Normal Distribution, Mostly Neutral 

Dangerous 
Type 6 3.1 < FM ≤4.0 Some Fine, Mostly Neutral 

Type 7 FM > 4.0 Neutral-Dominant 
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with the highest performance was selected using the validation dataset. Ultimately, the model's 

performance was gauged by its ability to predict images with the test set. 

 

 Fig 2. Development of dataset and overall workflow of CNN model 

 

2.3. CNN-based sand classification models with transfer learning 

In standard sieving methods, FM calculation is based on mass. However, relying solely on image 

detection methods does not permit direct measurement of particle mass or accurate calculation of their 

complex shapes. CNN provide a crucial solution by extracting features from images for classification. 

As illustrated in Figure 3, CNN mainly consists of feature extractor and classifier. Feature extractor is 

achieved through convolution layers followed by ReLU activation functions after maximum pooling 

layers. Classifier processes these features through fully connected layers ultimately outputting 

classification probabilities for each category to improve prediction accuracy [19]. Training CNN from 

without previous training requires extensive data and computational resources that makes it time-

consuming and costly [12]. To overcome this, the study adopts a transfer learning approach, utilizing 

pre-trained models (VGG16, ResNet-101 and MobileNetV3 small) from large-scale general databases 

like ImageNet as backbone networks. These models have been selected for their extensive validation 

and superiority in performing classification tasks. Moreover, transfer learning methods accelerate the 

training process and generally provide better predictions [20]. 

Specifically, VGG16 model, with its deep and uniform architecture of repetitive 3x3 convolution 

layers and 2x2 maximum pooling layers stacked, achieves high accuracy in image classification and 

recognition tasks. Despite its size and longer training duration, VGG16 became a benchmark model in 

deep learning as a result of its’ exceptional performance in various computer vision objectives [12]. In 

order to overcome the gradient vanishing problem in deep networks, ResNet-101, with introduction of 

skip connections, contains 101 convolution layers that improves processing efficiency of computer vision 

tasks without compromising performance [20]. By contrast, MobileNetV3 small, designed for mobile or 

embedded systems, makes for a particularly suitable in environments with limited computing resources; 

as it effectively reduces computational demands through introduction of bottleneck layers [21]. 

In model construction process, the first step is loading three pre-trained models as feature extractors 

while adjusting model's last 20 layers to trainable state which allows for updates to these layers' weights 

during training whilst keeping the rest fixed. This method permits learning of task-specific high-level 

features without significantly increasing computational burden. For classifier part, a structure including 

batch normalization layers, flattening layer and two fully connected layers with L2 regularization is 

built to prevent overfitting and enhance model's generalization capability through dropout layers. Output 
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layer is designed as softmax layer with seven units for multi-class classification. The models are 

compiled using Adam optimizer, with initial learning rate set at 0.00001 to facilitate stability and 

convergence at early stages of training. 

 

Fig 3. CNN Architecture and Transfer Learning Process 

 

2.4. Evaluation criteria 

The performance of proposed FM detection method for sand is evaluated using a set of standard 

performance metrics which includes: precision, recall, F1 score, accuracy and loss [20]. Precision is 

defined as the proportion of sand FM samples correctly classified. While recall indicates the proportion 

of specific FM sand samples correctly predicted out of the total samples. The F1 score, as the harmonic 

mean of precision and recall, provides a comprehensive assessment of the models’ performance on 

imbalanced data. Overall accuracy directly measures the models’ effectiveness across all classification 

tasks; becoming one of the primary evaluation metrics. The loss metric tracks changes in error 

throughout the training process offering a quantitative basis for assessing detection performance. These 

metrics are calculated based on scores from the confusion matrix, including True Positives (TP), True 

Negatives (TN), False Positives (FP) and False Negatives (FN). Indicators mentioned are defined below: 

Precision (P) = 
TP

TP+FP
(2) 

Recall (R) = 
TP

TP+FN
(3) 

F1-Score = 
2PR

P+R
(4) 

Accuracy = 
TP+TN

TP+TN+FP+FN
(5) 
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3. MODEL TRAINING AND VALIDATION 

This study conducted training and validation using the model constructed in Section 2.3 to prevent 

overfitting and underfitting, utilizing a mini batch size of 8 and 50 epochs. To ensure a consistent 

experimental environment for all three models, experiments were conducted on the same device 

equipped with a Keras -based Python 3.8 environment, an Intel(R) Core(TM) i5-12600KF @ 3.70 GHz 

CPU, an NVIDIA GeForce RTX 3060 Ti (8GB) GPU, and 16GB of memory, running on Windows 11 

Pro. The experimental outcomes, illustrated in Figure 4, demonstrate that all three models achieved an 

accuracy exceeding 95%, indicating that the models effectively learned the features without overfitting 

or underfitting during the training and validation process. 

 

Fig 4. Model training and validation results 

 

As Table 2 reveals, VGG16 outperformed the other models by achieving a maximum validation 

accuracy of 99.6% which is 6% higher than that of the lowest-performing model which was 

MobileNetV3 small. Also, Minimum Validation Loss was reduced by 4.8 times. Regarding training 

speed, ResNet-101 and MobileNetV3 small exhibited similar rates of approximately 9 seconds slower 

per epoch on average compared to VGG16. Consequently, in this research, for tasks of identifying the 

FM of concrete sand, VGG 16-based model emerges as the most suitable in terms of both accuracy and 

speed during the model learning process. 

 

Table 2. Comparison of learning performance 

 

4. PERFORMANCE EVALUATION OF THE TRAINED MODEL  

 The performance of models based on three distinct backbone networks was evaluated using the test 

data set which comprised of 1,960 input images (280 images for each of the seven sand types). The 

testing dataset with a variety of sand types ensured a thorough assessment of the models' generalization 

capabilities. Performance evaluation was primarily achieved through the final scores generated by 

classifiers and visualization of confusion matrices. In these matrices, true labels and prediction labels 

Model 
Total 

parameters 

Average 

time per 

epoch (s) 

Max 

Training 

Accuracy 

Min 

Training 

Loss 

Max 

Validation 

Accuracy 

Min 

Validation 

Loss 

VGG16 49,278,337 137 1 0.033911906 0.996428549 0.052208811 

ResNet-101 26,447,425 146 0.999829948 0.053775985 0.98775512 0.110577881 

MobileNet 

V3 small 
14,375,537 144 0.998469412 0.060507882 0.939795911 0.240217581 
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for each sand type is signified on the diagonals with corresponding values which indicates the number 

of images correctly classified. Conversely, values from the diagonal indicate the number of images 

misclassified, thus allowing for the calculation of correct classifications and misclassifications (MSC) 

as depicted in Figure 5. There was an increased likelihood of MSC due to the feature measurement 

values' similarity among adjacent sand images. Performance evaluation revealed that all models 

exhibited lower precision in classifying sand types 1 and 2, while the MobileNetV3 small model 

achieved higher accuracy solely for type 7 classification. This highlights the challenge of classifying 

densely arranged sand samples with high geometric similarity. In terms of detection speed, the three 

models demonstrated similar performance with an average processing time of 35.33 seconds. Further 

analysis of the models' precision, recall, F1 scores and correct classifications indicated that the 

MobileNetV3 Small model had the lowest average correct classification rate at 93.88%. On the other 

hand, VGG16 model achieved highest average correct classification rate at 99.87%. Therefore, the 

VGG16-based model exhibited the best performance throughout the recognition process both in terms 

of accuracy and speed. The findings from this study provide significant insights for the task of 

recognizing FM values in sand used for concrete that demonstrates the effectiveness and efficiency of 

models based on the VGG16 backbone network in handling such image recognition tasks. 

 

Fig 5. Confusion Matrix for Model Performance Evaluation of Classified Sand FM 

 4. CONCLUSIONS 

In this study, we presented a sand FM evaluation method using transfer learning techniques based on 

VGG16, ResNet-101 and MobileNetV3 small deep learning models. The method validates the 

feasibility of CNN for real-time assessment of sand quality in the concrete production process by 

classifying the FM of dense sand grains. The experimental results show that VGG16 model leads with 

the highest average classification accuracy of 99.87%. Among these three models, VGG16 model 

achieved a speed of 56 images per second. This demonstrates the potential for deep learning to improve 

the accuracy and efficiency of construction materials quality inspection. This represents a significant 

advancement over traditional sieve analysis, providing a faster, less labor intensive and more accurate 

method of assessing sand quality. However, the smallest FM values for type 1 and 2 showed the lowest 

accuracy in all three models, such as recording of worst error rate by 8.20% using MobileNetV3 small. 

Furthermore, the study faces limitations due to the geographical scope and diversity of the dataset. 

Moreover, the high computational resource demands of deep learning models that affect their 

application in resource-constrained environments. The generalization capability of CNN models in real 

production settings, and its ability to handle extreme samples, require further validation. Future research 

should focus on expanding the diversity of the dataset, optimizing models and exploring more efficient 

lightweight model architectures to adapt to various production conditions; with an aim to 
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comprehensively improve the efficiency and accuracy of sand quality assessment and further advance 

the application of deep learning technology within the construction materials industry. 
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