DOI QR코드

DOI QR Code

Applications of Artificial Intelligence (AI) in Construction Project Management: A Systematic Literature Review

  • Prem Raj Timilsena (Department of Construction Management, Lyles College of Engineering, California State University) ;
  • Manideep Tummalapudi (Department of Construction Management, Lyles College of Engineering, California State University) ;
  • Bradley Hyatt (Department of Construction Management, Lyles College of Engineering, California State University) ;
  • Srikanth Bangaru (Construction Technology, Inn Circles Construction Technology Solutions) ;
  • Omobolanle Ogunseiju (School of Building Construction, College of Design, Georgia Tech)
  • Published : 2024.07.29

Abstract

The rapid emergence of Artificial Intelligence (AI) across diverse sectors has also made its presence felt in the construction sector, where its adoption is gaining momentum at a remarkable pace. The anticipated impact of AI on decision-making processes pertinent to construction project management is considerable, necessitating a holistic understanding of AI's potential applications. As a first step towards that goal, this paper conducts a systematic literature review and in-depth content analysis of existing literature related to the applications of AI in the context of construction project management. The authors selected journal papers, technical papers, and conference proceedings published between 2010 and 2023 on the topic of Artificial Intelligence for construction project management applications. Additionally, the authors also reviewed several industry and trade publications in the same topic area. The search resulted in more than 200 relevant articles, after which the authors conducted a thorough content analysis. The results categorized applications of AI in construction project management across categories: construction productivity, construction safety, construction quality, construction document management, and construction site planning. Additionally, the review identified the current trends of AI applications in construction project management, advantages, and challenges to implementation. Understanding AI applications, advantages, and challenges to implementation helps contractors gain new insights into the efficient implementation of AI for various project management purposes.

Keywords

References

  1. Abioye, S., Oyedele, L. O., Akanbi, L., Ajayi, A. O., Bilal, M., Akinade, O. O., & Ahmed, A. (2021). Artificial intelligence in the construction industry: A review of present status, opportunities, and future challenges. Journal of Building Engineering, 44, 103299. https://doi.org/10.1016/j.jobe.2021.103299 
  2. Ajayi, A. O., Oyedele, L. O., Delgado, J. M. D., Akanbi, L., Bilal, M., Akinade, O. O., & Olawale, O. (2019). Big data platform for health and safety accident prediction. World Journal of Science, Technology and Sustainable Development, 16(1), 2-21. https://doi.org/10.1108/wjstsd-05-2018-0042 
  3. Arditi, D., & Pulket, T. (2009). Predicting the outcome of construction litigation using an integrated artificial intelligence model. Journal of Computing in Civil Engineering, 24(1), 73-80. 
  4. Ayodele, T. O., & Kajimo-Shakantu, K. (2021). The fourth industrial revolution (4thIR) and the construction industry - the role of data sharing and assemblage. IOP Conference Series: Earth and Environmental Science, 654(1), 012013. https://doi.org/10.1088/1755-1315/654/1/012013 
  5. Baduge, S. K., Thilakarathna, S., Perera, J. M., Arashpour, M., Sharafi, P., Teodosio, B., Shringi, A., & Mendis, P. (2022). Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Automation in Construction, 141, 104440. https://doi.org/10.1016/j.autcon.2022.104440 
  6. Bello, S. A., Oyedele, L. O., Akinade, O. O., Bilal, M., Akanbi, L., & Ajayi, A. O. (2021). Cloud computing in the construction industry: Use cases, benefits, and challenges. Automation in Construction, 122, 103441. https://doi.org/10.1016/j.autcon.2020.103441 
  7. Bigham, G. F., Adamtey, S., Onsarigo, L., & Jha, N. (2019). Artificial intelligence for construction safety: Mitigation of the risk of fall. In Intelligent Systems and Applications: Proceedings of the 2018 Intelligent Systems Conference (IntelliSys) Volume 2 (pp. 1024-1037). Springer International Publishing. 
  8. Blanco, J. L., Fuchs, S., Parsons, M., & Ribeirinho, M. J. (2018, April 4). Artificial intelligence: Construction technology's next frontier. McKinsey & Company. https://www.mckinsey.com/capabilities/operations/our-insights/artificial-intelligence-construction-technologys-next-frontier#/ 
  9. Blanco, J.L., Mullin, A., Pandya, K., Sridhar, M., 2017. The New Age of Engineering and Construction Technology. McKinsey & Company, Philadelphia, PA. 
  10. Bloch, T., & Sacks, R. (2018). Comparing machine learning and rule-based inferencing for semantic enrichment of BIM models. Automation in Construction, 91, 256-272. https://doi.org/10.1016/j.autcon.2018.03.018 
  11. Bolpagni, M., Gavina, R., & Ribeiro, D. (Eds.). (2021). Industry 4.0 for the Built Environment: Methodologies, Technologies, and Skills (Vol. 20). Springer Nature. 
  12. Bughin, J., Hazan, E., Ramaswamy, S., Chui, M., Allas, T., Dahlstrom, P., Henke, N., & Trench, M. (2017). How artificial intelligence can deliver real value to companies. In McKinsey & Company. https://www.mckinsey.com/capabilities/quantumblack/our-insights/how-artificial-intelligence-can-deliver-real-value-to-companies 
  13. Chakkravarthy, R. (2019). ARTIFICIAL INTELLIGENCE for Construction Safety. Professional Safety, 64(1), 46. https://login.hmlproxy.lib.csufresno.edu/login?url=https://www-proquest-com.hmlproxy.lib.csufresno.edu/scholarly-journals/artificial-intelligence-constructionsafety/docview/2165604383/se-2 
  14. Chien, C., Dauzere-Peres, S., Huh, W. T., Jang, Y. J., & Morrison, J. R. (2020). Artificial intelligence in manufacturing and logistics systems: algorithms, applications, and case studies. International Journal of Production Research, 58(9), 2730 - 2731. https://doi.org/10.1080/00207543.2020.1752488 
  15. Chou, J. S., & Lin, C. (2012). Predicting disputes in public-private partnership projects: Classification and ensemble models. Journal of Computing in Civil Engineering, 27(1), 51-60. 
  16. Chou, J. S., Tsai, C. F., & Lu, Y. H. (2013). Project dispute prediction by hybrid machine learning techniques. Journal of Civil Engineering and Management, 19(4), 505-517. 
  17. Chui, M. (2017). Artificial intelligence the next digital frontier. McKinsey and Company Global Institute, 47(3.6). 
  18. Collinge, W. H., Farghaly, K., Mosleh, M. H., Manu, P., Cheung, C., & Osorio-Sandoval, C. A. (2022). BIM-based construction safety risk library. Automation in Construction, 141, 104391. https://doi.org/10.1016/j.autcon.2022.104391 
  19. Delgado, J. M. D. (2021). Digital Twins for the built environment: learning from conceptual and process models in manufacturing. Advanced Engineering Informatics, 49, 101332. https://doi.org/10.1016/j.aei.2021.101332 
  20. Eber, W. (2020). Potentials of artificial intelligence in construction management. Organization, Technology and Management in Construction: An International Journal, 12(1), 2053-2063. https://doi.org/10.2478/otmcj-2020-0002 
  21. Fargnoli, M., & Lombardi, M. (2020). Building Information Modelling (BIM) to Enhance Occupational Safety in Construction Activities: Research Trends Emerging from One Decade of Studies. Buildings, 10(6), 98. https://doi.org/10.3390/buildings10060098 
  22. Gao, H., Koch, C., & Wu, Y. (2019). Building information modeling based building energy modeling: A review. Applied Energy, 238, 320-343. https://doi.org/10.1016/j.apenergy.2019.01.032 
  23. Gbadamosi, A. Q., Mahamadu, A. M., Manu, P., Akinade, O., Sierra, F., Lam, T. T., & Alzaatreh, A. (2018, June). A BIM-based approach for optimization of construction and assembly through material selection. In Proceedings of the Creative Construction Conference. 
  24. Ginzburg, A., Kuzina, O., & Ryzhkova, A. (2018). Unified resources marking system as a way to develop artificial intelligence in construction. IOP Conf. Ser. Mater. Sci. Eng. 365. https://doi.org/10.1088/1757-899X/365/6/062021. 
  25. Golnaraghi, S., Zangenehmadar, Z., Moselhi, O., & Alkass, S. (2019). Application of Artificial Neural Network(s) in Predicting Formwork Labour Productivity. Advances in Civil Engineering, 2019, 1-11. https://doi.org/10.1155/2019/5972620 
  26. Holzmann, V., & Lechiara, M. (2022). Artificial intelligence in construction Projects: An Explorative study of Professionals' expectations. European Journal of Business and Management Research, 7(3), 151-162. https://doi.org/10.24018/ejbmr.2022.7.3.1432 
  27. Koskela, L., Ballard, G., & Howell, G. (2003, July). Achieving change in construction. In Proceedings of the International Group of Lean Construction 11th Annual Conference (IGLC-11) (Vol. 22, p. 24). 
  28. Korke, P., Gobinath, R., Shewale, M., & Khartode, B. (2023). Role of artificial intelligence in construction project management. E3S Web of Conferences, 405, 04012. https://doi.org/10.1051/e3sconf/202340504012 
  29. Kuenzel, R., Teizer, J., Mueller, M., & Blickle, A. (2016). SmartSite: Intelligent and autonomous environments, machinery, and processes to realize smart road construction projects. Automation in Construction, 71, 21-33. 
  30. Li, R. Y. M. (2018). An Economic Analysis on Automated Construction Safety. In Springer eBooks. https://doi.org/10.1007/978-981-10-5771-7 
  31. Lien, L. C., & Cheng, M. Y. (2014). Particle bee algorithm for tower crane layout with material quantity supply and demand optimization. Automation in Construction, 45, 25-32. 
  32. Lin, Z., Chen, A. Y., & Hsieh, S. (2021). Temporal image analytics for abnormal construction activity identification. Automation in Construction, 124, 103572. https://doi.org/10.1016/j.autcon.2021.103572 
  33. Martinez-Rojas, M., Marin, N., & Miranda, M. a. V. (2016). An intelligent system for the acquisition and management of information from bill of quantities in building projects. Expert Systems With Applications, 63, 284-294. https://doi.org/10.1016/j.eswa.2016.07.011 
  34. Momade, M. H., Durdyev, S., Dixit, S., Shahid, S., & Alkali, A. K. (2022). Modeling labor costs using artificial intelligence tools. International Journal of Building Pathology and Adaptation. https://doi.org/10.1108/ijbpa-05-2022-0084 
  35. Momade, M. H., Shahid, S., Falah, G., Syamsunur, D., & Estrella, D. (2021). Review of construction labor productivity factors from a geographical standpoint. International Journal of Construction Management, 23(4), 697-707. https://doi.org/10.1080/15623599.2021.1917285 
  36. Mostafa, A.L., Mohamed, M.A., Ahmed,S., & Youssef, W.M. (2023). Application of Artificial Intelligence Tools with BIM Technology in Construction Management: Literature Review. Journal of International Journal of BIM and Engineering Science, 6 ( 2 ), 39-54 (Doi: https://doi.org/10.54216/IJBES.060203) 
  37. Nagendra, S. V., & Rafi, N. (2018). Application of Artificial Intelligence in Construction Project Management. International Journal of Research in Engineering, Science and Management. https://www.ijresm.com/Vol_1_2018/Vol1_Iss12_December18/IJRESM_V1_I12_99.pdf 
  38. Nikas, A., Poulymenakou, A., & Kriaris, P. (2007). Investigating antecedents and drivers affecting the adoption of collaboration technologies in the construction industry. Automation in Construction, 16(5), 632-641. https://doi.org/10.1016/j.autcon.2006.10.003 
  39. Oprach, S., Bolduan, T., Steuer, D., Vossing, M., & Haghsheno, S. (2019). Building the Future of the Construction Industry through Artificial Intelligence and Platform Thinking. Digitale Welt, 3(4), 40-44. https://doi.org/10.1007/s42354-019-0211-x 
  40. Pan, Y., & Zhang, L. (2021). Roles of artificial intelligence in construction engineering and management: A critical review and future trends. Automation in Construction, 122, 103517. https://doi.org/10.1016/j.autcon.2020.103517 
  41. Patil, G. (2019). Applications of artificial intelligence in construction management. International Journal of Research in Engineering, 32(03), 32-1541. 
  42. Patricio, D., & Rieder, R. (2018). Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Computers and Electronics in Agriculture, 153, 69-81. https://doi.org/10.1016/j.compag.2018.08.001 
  43. Rane, N. (2023) Integrating Building Information Modelling (BIM) and Artificial Intelligence (AI) for Smart Construction Schedule, Cost, Quality, and Safety Management: Challenges and Opportunities. http://dx.doi.org/10.2139/ssrn.4616055 
  44. Regona, M., Yigitcanlar, T., Xia, B., & Li, R. Y. M. (2022). Opportunities and adoption Challenges of AI in the construction industry: A PRISMA review. Journal of Open Innovation: Technology, Market, and Complexity, 8(1), 45. https://doi.org/10.3390/joitmc8010045 
  45. Soltani, M. M., Motamedi, A., & Hammad, A. (2015). Enhancing Cluster-based RFID Tag Localization using artificial neural networks and virtual reference tags. Automation in Construction, 54, 93-105. 
  46. Sota, L. O. (2021). APPLICATION OF ARTIFICIAL INTELLIGENCE FOR CONSTRUCTION PROJECT PLANNING. Coventry. https://www.academia.edu/44922975/APPLICATION_OF_ARTIFICIAL_INTELLIGENCE_FOR_CONSTRUCTION_PROJECT_PLANNING 
  47. Tender, M., Couto, J. P., & Fuller, P. (2021). Improving occupational health and safety data integration using building information modelling. In Studies in systems, decision and control (pp. 75-84). https://doi.org/10.1007/978-3-030-89617-1_7 
  48. To, T. H. Q. (2021). Applying BIM and related technologies for maintenance and quality management of construction assets in Vietnam. https://publisher.uthm.edu.my/ojs/index.php/IJSCET/article/view/10497 
  49. Victor, N. O. C. (2023). The application of artificial intelligence for construction project planning. Research Square (Research Square). https://doi.org/10.21203/rs.3.rs-2801695/v1 
  50. Xiao, C., Liu, Y., & Akhnoukh, A. (2018). Bibliometric review of artificial intelligence (AI) in construction engineering and management. ICCREM 2018. https://doi.org/10.1061/9780784481721.004 
  51. Xu, J., & Li, Z. (2012). Multi-objective dynamic construction site layout planning in fuzzy random environment. Automation in Construction, 27, 155-169. 
  52. Yahya, M., & Saka, M. P. (2014). Construction site layout planning using multi-objective artificial bee colony algorithm with Levy flights. Automation in construction, 38, 14-29. 
  53. Young, D., Panthi, K., & Noor, O. (2021). Challenges involved in adopting BIM on the construction job site. EPiC Series in Built Environment. https://doi.org/10.29007/f8r3 
  54. Zeng, Z., Xu, J., Wu, S., & Shen, M. (2014). Antithetic method -based particle swarm optimization for a queuing network problem with fuzzy data in concrete transportation systems. Computer-Aided Civil and Infrastructure Engineering, 29(10), 771-800. 
  55. Zhang, L., Pan, Y., Wu, X., & Skibniewski, M. J. (2021). Artificial intelligence in construction engineering and management. In Lecture notes in civil engineering. https://doi.org/10.1007/978-981-16-2842-9 
  56. Zhong, R.Y., Xu, X., Klotz, E., & Newman, S.T. (2017). Intelligent Manufacturing in the Context of Industry 4.0: A Review. Engineering 3. https://doi.org/10.1016/J.ENG.2017.05.015.