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Abstract: In this research, we present the implementation of a mixed-input neural network for daylight 

prediction in the architectural design process. This approach harnesses the advantages of both image 
and numerical inputs to construct a robust neural network model. The hybrid model consists of two 

branches, each handling in-depth information about the building. Consequently, this model can 

effectively accommodate a wide range of building layouts, incorporating additional information for 

enhanced predictions. The building data was created utilizing PlanFinder in Rhino Grasshopper, while 
simulation data were generated using Honeybee and Ladybug. Weather data were collected from three 

distinct localities in Vietnam: Ha Noi, Da Nang, and Ho Chi Minh City. The neural network 

demonstrates outstanding performance, achieving an R-squared (R2) value of 0.95 and the overall 
percentage difference in the testing dataset ranges from 0 to 20.7%.  

 

Keywords: Convolutional neural network, Daylight analysis, Mixed-input neural network, Multilayer 
perceptrons 

1. INTRODUCTION  

In recent years, artificial intelligence (AI) has significantly reduced the time-consuming and complex 
simulation tasks related to daylight analysis in architecture design[1], [2], [3]. It has decreased reliance 

on simulation tools and accelerated workflow processes [4], [5].  

The selection of an AI model is contingent upon the intended prediction objective and the nature of 
the data it handles. Most of the issues related to predicted daylight analysis pertain to regression 

problems. Liu et al, (2023) determined that the Artificial Neural Network (ANN) is the optimal model 

for regression tasks [2]. Ayoub (2020) stated that more than 50% of the models used are ANN, with the 

rest being comprised of Multiple Linear Regression (MLR), Support Vector Machines (SVM), and 
Decision Trees (DT) [6]. 

Among research that used ANN for prediction, many used multilayer perceptrons (MLP) when 

dealing with numerical data input [4], [5], [7], [8]. The numerical data could be the parameters that 
characterize the building shape like room size, window-to-wall ratio, building orientation, sensor point 

identification, sensor relationship with surrounding obstacles, building location, weather data, material 

properties… Conversely, in cases where the input data is in the form of images, other researchers, such 

as He et al. (2021), have opted for the Convolutional Neural Network (CNN) and GAN (Generative 
Adversarial Network) architecture [9]. In this case, the building's 2D-floor plans were used as the input 

data for the neural network. 

The drawback of utilizing numerical data as input arises from its incapacity to fully depict the intricate 
forms of buildings, rendering it less optimal for handling varied building layouts. Conversely, image 

input can compensate for this limitation by visually representing the building's form. However, a 
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limitation with image input is that numerous parameters associated with the buildings or the design 

context may not be readily depicted or represented via an image.  
From this perspective, the study presents a method that utilizes a hybrid approach called a mixed-

input neural network. This network exploits the advantages of both types of inputs. The mixed-input 

neural network consists of two branches for data input: one dedicated to processing images using CNN 
and another designed for handling numerical data using MLP. With this approach, the neural network 

can handle various diverse building layouts while incorporating additional information. 

This study's building and simulation data were produced through an automated process in Rhino and 

Grasshopper, employing the Honeybee and Ladybug simulation tools. The training process was carried 
out on Google Colab, yielding very positive prediction results from the model. The subsequent sections 

provide comprehensive information on the research methodology, evaluation, and conclusions. 

2. METHODOLOGY 

2.1 Overall workflow 

Figure 1 illustrates the comprehensive workflow of this research, which consists of three primary 

parts: data preprocessing, neural network training, and utilization of the well-trained model for 
predictions. The first step involves data preparation for training the mixed-input neural network, which 

includes integrating image and non-image data and simulation data. The next step involves data 

processing and training the neural network. In this phase, the prepared dataset, comprising both image 
and non-image data along with simulation data, undergoes further processing to ensure compatibility 

with the neural network architecture. Once the mixed-input neural network is well-trained, it is utilized 

for predictions with appropriate input data. 

 

Figure 1. The overall workflow 

2.2 Data preparation 

The building and daylight simulation data for this study were generated using Rhino and Grasshopper, 

utilizing the PlanFinder, an AI-based tool for generating floor plans, alongside Ladybug and HoneyBee 

simulations [10]. The dataset used encompasses floor plans tailored for individual houses, spanning an 
average size spectrum from 50 m2 to 100 m2. These floor plans replicated real-world designs and offer 

a variety of layouts and room quantities. By integrating these floor plans, the practicality of the study 

was enhanced. 
PlanFinder generates a floor plan based on a boundary and an entrance point. A rectangle with sides 

A and B, ranging from 7 m to 10 m, was established, accompanied by the entrance point (x) moving 

along one of its edges, as shown in Figure 2. Although PlanFinder can efficiently generate floor plans, 

it cannot currently adjust the window-to-wall ratio (W). As a result, a custom script has been 
implemented to modify the window-to-wall ratio between 0.7 and 0.9, as shown in Table 1. After 

obtaining the floor plans, the next step was to prepare energy models for the simulation process. 

Table 1. Input parameters 

Parameters Number of values Values 

Width (A) 7 {7 m to 10 m | step = 0.5 m} 

Height (B) 7 {7 m to 10 m | step = 0.5 m} 

Entrance (x) 3 0.25, 0.5, 0.75 

Window to wall ratio (W) 3 0.7, 0.8, 0.9 

Location (L) 3 Ha Noi, Da Nang, Ho Chi Minh 

Orientation (O) 4 0, 90, 180, 270 
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For daylight analysis, this research used the Spatial Daylight Autonomy (sDA) metric, which 

indicates the percentage of the analysis area that meets a minimum daylight illuminance level during a 
specified portion of the annual operating hours. The standard sDA thresholds are 300 lux of illuminance 

and 50%-time fraction (sDA300, 50%) [11]. The simulation process was carried out at three distinct 

locations in Vietnam, ranging from North to South: Hanoi, Da Nang, and Ho Chi Minh City, with the 
corresponding weather data. Table 1 shows that each case was considered with various building 

orientations (L), including North, South, East, and West. The working plane was set up at a height of 

0.76 m, with a grid size of 0.3 x 0.3 m. For the sake of simplicity, all materials were assigned default 

settings. The entire process, from creating floor plans to collecting simulation results, was automated 
using Grasshopper. 

Upon completing the entire simulation process, all input and output data were collected. In summary, 

the input data in image form includes simplified floor plans of the energy model, as shown in Figure 2. 

The numerical input data consists of a collection of parameters, including A, B, x, W, L, and O. The 
output data comprises sDA values for each case. Initially, the dataset contained 5,292 cases. However, 

after removing some unfavorable cases, the remaining dataset contains 5,040 cases. 

2.3 Mixed-input neural network 

As described in Figure 3, the mixed-input neural network combines CNN and MLP models to make 

predictions. The input data is separated into two branches: the image branch, which feeds into the CNN, 

and the numerical data branch, which feeds into the MLP. Instead of producing separate final results, 

their outputs are concatenated in the last layer of both models. The concatenated output is then passed 
through fully connected layers with specific activation functions to generate predictions. 

 

Figure 2. Data preparation process 
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Figure 3. Mixed neural network data flow 

The data was preprocessed to get ready for neural network training. Initially, the image data was 

uniformly resized to 680 x 680 pixels. A min-max scaling approach was used to normalize each 

parameter of the numerical data. This technique ensures that all parameters are within the range of 0 to 
1, regardless of their original unit formats. Furthermore, the location data was encoded using numerical 

values, with values ranging from 0 to 2 assigned to the three cities, before being scaled. The dataset was 

split into a training set and a test set with a ratio of 75-25, following Figure 4. In addition, 20% of the 
data from the training set was allocated as a validation set. 

The neural network was trained on Google Colab using Tensorflow version 2.15.0. Referencing 

Table 2, the MLP branch of the model incorporates an input layer designed for numerical features, 

configured with a size of 6 to align with the training data. Subsequent hidden layers consist of a dense 
layer with 6 neurons and Rectified Linear Unit (ReLU) activation, followed by another dense layer with 

4 neurons and ReLU activation. 

Table 2. Mixed Neural Network Architecture 

Model Branch Layer type Details 

MLP 

Input layer Numerical feature, dimension: 6 

Hidden layer 1 Dense layer (6 neurons) and ReLU activation 

Output layer Dense layer (4 neurons) and ReLU activation 

CNN 

Input layer Image (128x128x3) 

Convolutional layer 
Three layers with filter (16, 32, 64), each with  ReLU 

activation, batch normalization, and max-pooling 

Fully connected layer 
Flatten, Dense Layer (16 neurons), with  ReLU activation, 

batch normalization, and drop-out. 

Output layer Dense layer (4 neurons) with ReLU activation 

Combined Model 

Merge MLP and CNN Concatenate MLP and CNN outputs 

Fully Connected Layer Dense layer (4 neurons) with ReLU activation 

Output Layer 
Dense layer (1 neuron) with linear activation     

for regression (sDA) 

Conversely, the CNN component is specialized for processing image data, accepting images with 

dimensions of 128 x 128 x 3 (height, width, depth). The architecture comprises three convolutional 
layers with increasing filter sizes (16, 32, 64), each featuring ReLU activation, batch normalization, and 

max-pooling. A fully connected layer follows, flattening the volume and connecting to a dense layer 

with 16 neurons, ReLU activation, batch normalization, and Drop-out. The output layer consists of a 
dense layer that contains 4 neurons and utilizes the ReLU activation function. 

The outputs of both the MLP and CNN models are amalgamated into a single input for the final 

layers. The ultimate layers include a fully connected layer head with two dense layers. The last dense 

layer operates as the regression head, predicting the Spatial Daylight Autonomy (sDA).  
The neural network's hyperparameters were set with a learning rate of 1e-4 and the Adam optimizer, 

while the batch size was set to 64. The selected loss function for training was the mean squared error 

(MSE). The Early Stopping technique was utilized to mitigate overfitting and improve the ability of the 
model to generalize. This involved monitoring the validation loss and stopping the training process if 

no improvement was observed for a continuous period of 100 epochs. The model's performance was 
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validated using the coefficients of determination (R2) and mean absolute error (MAE) [12]. Equations 

(1) (2) describe the following metrics: 

MAE =
1

N
∑|ŷⅈ − yⅈ|

N

ⅈ=1

(1) 

R2 = 1 −
Σⅈ=1
N (ŷⅈ − yⅈ)

2

Σⅈ=1
N (yⅈ − yi̅)2

 (2) 

 
Figure 4. Input and output for training and predicting  

3. RESULTS 

Thanks to the Early Stopping function, the training process was halted at epoch 595. The model 

exhibited the following key metrics: the Training Loss was 6.3629e-04, and the Validation Loss was 

4.5592e-04, as illustrated in Figure 5. 

  

Figure 5. Training and Validation loss over Epochs Figure 6. Actual vs. Predicted sDA values 

Upon applying the prediction model to the test dataset, remarkable accuracy was observed, evidenced 

by the R2 value of 0.95 and the MAE of 0.02. Illustrated in Figure 6, the majority of predicted points 
closely align with the 1:1 line, indicating a high level of agreement between the model's predictions and 

the actual values. The absolute percentage difference (%) range across the entire testing dataset is from 

0 to 20.7%. Table 3 provides a detailed comparison of several cases, offering a granular examination 

of how the model's predictions compare to the actual values across different instances. 
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Table 3. A comparison of several cases of actual and predicted sDA. 

Case number/ 

image 

Input Output Absolute 

Percentage 

Difference 

(%) 

Location 

(L) 

W/W 

ratio 

(W) 

A B 
Orienta

tion (O) 

Entrance 

(x) 

Actual 

sDA 

Predi

cted 

sDA 

4350 

Da Nang 0.8 7 m 8.5 m 
270 
(East) 

0.5 0.503 0.536 6.62 

 

240 

Ha Noi 0.8 9.5 m 7.5 m 
0 
(North) 

0.75 0.567 0.567 0.06 

 

1666 

Ha Noi 0.9 10 m 8 m 
90 
(West) 

0.5 0.742 0.726 2.16 

 

915 

Ho Chi 
Minh city 

0.7 8.5 m 10 m 
0 
(North) 

0.5 0.709 0.69 3.34 

 

3576 

Ho Chi 
Minh city 

0.8 8.5 m 10 m 
180 
(South) 

0.75 0.734 0.724 1.33 

 

4. CONCLUSIONS AND FUTURE WORK 

The research article introduces a method for predicting daylight performance using a mixed-input 

neural network. By incorporating both image and non-image contextual information, the neural network 

model demonstrates the capability to predict daylight performance rapidly. The model's exceptionally 
accurate predictions substantiate the promise of this approach, highlighting its potential as an effective 

and reliable tool in daylight performance prediction.  

Although the model performed well with the current dataset, the general characteristics of the floor 
plans in this dataset were not yet truly diverse. Rectangular boundaries still be used to generate them, 

and the sizes were not significant. Furthermore, many non-geometric features, such as material types, 

shading devices, etc., were not addressed. Due to its simplicity, the simulation setting was also set by 

default. Therefore, in the subsequent steps to advance this research, a more extensive dataset with 
diverse non-geometric information needs to be incorporated. Additionally, the method can be extended 

to predict various metrics such as energy usage and lighting indices like annual sunlight exposure, 

illumination, and daylight factor. 
Furthermore, this research can develop into a tool for the design process, seamlessly incorporated 

into the output of PlanFinder. As a result, it can immediately offer real-time evaluations of a project's 
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daylight or energy consumption once PlanFinder produces it. This integration would allow designers to 

promptly obtain insights into a structure's daylight performance or energy efficiency, thereby improving 
the efficiency and effectiveness of the design workflow. 
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