Acknowledgement
This research was supported by the Ministry of Education Taiwan (Grant number: MOE-TSP-110.08.16) and facilitated by the National Center for Research on Earthquake Engineering and the Department of Civil Engineering, National Taiwan University (NCREE-NTUCE) Joint Artificial Intelligence Research Center. This research is also funded by The Ministry of Science and Technology (MOST) through a project (Grant number: 108-WFA-0110-731).
References
- Project Management Institute, A guide to the project management body of knowledge (PMBOK® guide), vol. 40. 2008.
- P. Hee-Sung, T. S. R., and T. R. L., "Benchmarking of Construction Productivity," J Constr Eng Manag, vol. 131, no. 7, pp. 772-778, Jul. 2005, doi: 10.1061/(ASCE)0733-9364(2005)131:7(772).
- V. Gaspersz, "Manajemen Produktivitas Total Strategi Oeningkatan Produktivitas Bisnis Global," Gramedia Pustaka Utama, Jakarta, 1998.
- R. Farmer, "McKinsey & company," in Management Consultancy: What Next?, 2016. doi: 10.1057/9781403907189_24.
- A. Pal and S. H. Hsieh, "Deep-learning-based visual data analytics for smart construction management," Automation in Construction, vol. 131. Elsevier, p. 103892, 2021. doi: 10.1016/j.autcon.2021.103892.
- A. S. da Barbosa and D. B. Costa, "PRODUCTIVITY MONITORING OF CONSTRUCTION ACTIVITIES USING DIGITAL TECHNOLOGIES: A LITERATURE REVIEW," in IGLC 2021 - 29th Annual Conference of the International Group for Lean Construction - Lean Construction in Crisis Times: Responding to the Post-Pandemic AEC Industry Challenges, 2021. doi: 10.24928/2021/0141.
- W. S. Alaloul, K. M. Alzubi, A. B. Malkawi, M. Al Salaheen, and M. A. Musarat, "Productivity monitoring in building construction projects: a systematic review," Engineering, Construction and Architectural Management, vol. 29, no. 7, pp. 2760-2785, Jan. 2022, doi: 10.1108/ECAM-03-2021-0211.
- B. Sherafat et al., "Automated Methods for Activity Recognition of Construction Workers and Equipment: State-of-the-Art Review," J Constr Eng Manag, vol. 146, no. 6, 2020, doi: 10.1061/(asce)co.1943-7862.0001843.
- S. Archchana and W. Pan, "BUILDING INFORMATION MODELLING FOR CONSTRUCTION PRODUCTIVITY MEASUREMENT," in World Construction Symposium, 2023. doi: 10.31705/WCS.2023.25.
- A. S. M. Moohialdin, F. Lamari, M. Miska, and B. Trigunarsyah, "Construction worker productivity in hot and humid weather conditions: A review of measurement methods at task, crew and project levels," Engineering, Construction and Architectural Management, vol. 27, no. 1. 2020. doi: 10.1108/ECAM-05-2018-0191.
- K. Mhmoud Alzubi, W. Salah Alaloul, A. B. Malkawi, M. Al Salaheen, A. Hannan Qureshi, and M. Ali Musarat, "Automated monitoring technologies and construction productivity enhancement: Building projects case," Ain Shams Engineering Journal, vol. 14, no. 8, 2023, doi: 10.1016/j.asej.2022.102042.
- A. Rathnayake and C. Middleton, "Systematic Review of the Literature on Construction Productivity," J Constr Eng Manag, vol. 149, no. 6, 2023, doi: 10.1061/jcemd4.coeng-13045.
- T. H. Randolph, "Labor Productivity and Work Sampling: The Bottom Line," J Constr Eng Manag, vol. 117, no. 3, pp. 423-444, Sep. 1991, doi: 10.1061/(ASCE)0733-9364(1991)117:3(423).
- Z. Qilin, W. Zhichen, Y. Bin, L. Ke, Z. Binghan, and L. Boda, "Reidentification-Based Automated Matching for 3D Localization of Workers in Construction Sites," Journal of Computing in Civil Engineering, vol. 35, no. 6, p. 04021019, Nov. 2021, doi: 10.1061/(ASCE)CP.1943-5487.0000975.
- M. B. Eddine, A. Mohamad, and K. Hiam, "Vision-Based Framework for Intelligent Monitoring of Hardhat Wearing on Construction Sites," Journal of Computing in Civil Engineering, vol. 33, no. 2, p. 4018066, Mar. 2019, doi: 10.1061/(ASCE)CP.1943-5487.0000813.
- N. Wojke, A. Bewley, and D. Paulus, "Simple online and realtime tracking with a deep association metric," in Proceedings - International Conference on Image Processing, ICIP, 2017. doi: 10.1109/ICIP.2017.8296962.
- E. Konstantinou, J. Lasenby, and I. Brilakis, "Adaptive computer vision-based 2D tracking of workers in complex environments," Autom Constr, vol. 103, pp. 168-184, 2019, doi: https://doi.org/10.1016/j.autcon.2019.01.018.
- T. Ghazaleh, H. Amin, and B. Nizar, "Two-Dimensional and Three-Dimensional CNN-Based Simultaneous Detection and Activity Classification of Construction Workers," Journal of Computing in Civil Engineering, vol. 36, no. 4, p. 4022009, Jul. 2022, doi: 10.1061/(ASCE)CP.1943-5487.0001024.
- J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once: Unified, real-time object detection," in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016. doi: 10.1109/CVPR.2016.91.
- S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," IEEE Trans Pattern Anal Mach Intell, vol. 39, no. 6, 2017, doi: 10.1109/TPAMI.2016.2577031.
- K. He, G. Gkioxari, P. Dollar, and R. Girshick, "Mask R-CNN," IEEE Trans Pattern Anal Mach Intell, vol. 42, no. 2, 2020, doi: 10.1109/TPAMI.2018.2844175.
- O. Kopuklu, X. Wei, and G. Rigoll, "You Only Watch Once: A Unified CNN Architecture for Real-Time Spatiotemporal Action Localization," CoRR, vol. abs/1911.06644, 2019, [Online]. Available: http://arxiv.org/abs/1911.06644
- M.-Y. Cheng, A. F. K. Khitam, and H. H. Tanto, "Construction worker productivity evaluation using action recognition for foreign labor training and education: A case study of Taiwan," Autom Constr, vol. 150, p. 104809, 2023, doi: https://doi.org/10.1016/j.autcon.2023.104809.
- J. J. Lin and M. Golparvar-Fard, "Construction Progress Monitoring Using Cyber-Physical Systems," in Cyber-Physical Systems in the Built Environment, 2020, pp. 63-87. doi: 10.1007/978-3-030-41560-0_5.
- G. A.S. and J. B. Edayadiyil, "Automated progress monitoring of construction projects using Machine learning and image processing approach," Mater Today Proc, vol. 65, pp. 554-563, 2022, doi: https://doi.org/10.1016/j.matpr.2022.03.137.
- L. J. J., H. K. K., and G.-F. Mani, "A Framework for Model-Driven Acquisition and Analytics of Visual Data Using UAVs for Automated Construction Progress Monitoring," Computing in Civil Engineering 2015. in Proceedings. pp. 156-164, Nov. 14, 2022. doi: doi:10.1061/9780784479247.020.
- L. J. J., H. K. K., and G.-F. Mani, "A Framework for Model-Driven Acquisition and Analytics of Visual Data Using UAVs for Automated Construction Progress Monitoring," Computing in Civil Engineering 2015. in Proceedings. pp. 156-164, Nov. 14, 2022. doi: doi:10.1061/9780784479247.020.
- N. Wang et al., "Exploring Spatio-Temporal Graph Convolution for Video-based Human-Object Interaction Recognition," IEEE Transactions on Circuits and Systems for Video Technology, p. 1, 2023, doi: 10.1109/TCSVT.2023.3259430.
- D. Purwanto, Y. T. Chen, and W. H. Fang, "First-Person Action Recognition with Temporal Pooling and Hilbert-Huang Transform," IEEE Trans Multimedia, vol. 21, no. 12, 2019, doi: 10.1109/TMM.2019.2919434.
- F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, "The graph neural network model," IEEE Trans Neural Netw, vol. 20, no. 1, 2009, doi: 10.1109/TNN.2008.2005605.
- P. Velickovic, A. Casanova, P. Lio, G. Cucurull, A. Romero, and Y. Bengio, "Graph attention networks," in 6th International Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings, 2018. doi: 10.1007/978-3-031-01587-8_7.
- M. Tomei, L. Baraldi, S. Calderara, S. Bronzin, and R. Cucchiara, "Video action detection by learning graph-based spatio-temporal interactions," Computer Vision and Image Understanding, vol. 206, 2021, doi: 10.1016/j.cviu.2021.103187.
- Y. Huang, H. Bi, Z. Li, T. Mao, and Z. Wang, "STGAT: Modeling spatial-temporal interactions for human trajectory prediction," in Proceedings of the IEEE International Conference on Computer Vision, 2019. doi: 10.1109/ICCV.2019.00637.
- H. Tang, P. Wei, J. Li, and N. Zheng, "EvoSTGAT: Evolving spatiotemporal graph attention networks for pedestrian trajectory prediction," Neurocomputing, vol. 491, 2022, doi: 10.1016/j.neucom.2022.03.051.
- A. Vaswani et al., "Attention is all you need," in Advances in Neural Information Processing Systems, 2017.
- J. Park, J. W. Park, and J. S. Lee, "ViPLO: Vision Transformer Based Pose-Conditioned Self-Loop Graph for Human-Object Interaction Detection," in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2023. doi: 10.1109/CVPR52729.2023.01645.
- Z. Liang, Y. Guan, and J. Rojas, "Visual-Semantic Graph Attention Network for Human-Object Interaction Detection," CoRR, vol. abs/2001.02302, 2020, [Online]. Available: http://arxiv.org/abs/2001.02302
- Z. Liang, J. Liu, Y. Guan, and J. Rojas, "Pose-based Modular Network for Human-Object Interaction Detection," CoRR, vol. abs/2008.02042, 2020, [Online]. Available: https://arxiv.org/abs/2008.02042
- R. Dominic, T. C. Wilfredo, T. Shuai, and G.-F. Mani, "Vision-Based Construction Worker Activity Analysis Informed by Body Posture," Journal of Computing in Civil Engineering, vol. 34, no. 4, p. 4020017, Jul. 2020, doi: 10.1061/(ASCE)CP.1943-5487.0000898.
- H. Yan, Y. Liu, L. Jin, and X. Bai, "The development,application,and future of LLM similar to ChatGPT," Journal of Image and Graphics, vol. 28, no. 9, 2023, doi: 10.11834/jig.230536.
- O. Seppanen, G. Ballard, and S. Pesonen, "The Combination of Last Planner System and Location-Based Management System," Lean Construction Journal, vol. 6, Jan. 2010.
- J. Ratajczak, M. Riedl, and D. T. Matt, "BIM-based and AR application combined with location-based management system for the improvement of the construction performance," Buildings, vol. 9, no. 5, 2019, doi: 10.3390/buildings9050118.
- R. Kenley and O. Seppanen, Location-Based Management for Construction: Planning, Scheduling and Control. 2016. doi: 10.4324/9780203030417.
- H. Huang, "Location Based Services," in Springer Handbooks, 2022. doi: 10.1007/978-3-030-53125-6_22.
- C.-J. Liang, X. Wang, V. R. Kamat, and C. C. Menassa, "Human-Robot Collaboration in Construction: Classification and Research Trends," J Constr Eng Manag, vol. 147, no. 10, 2021, doi: 10.1061/(asce)co.1943-7862.0002154.
- Y. Liu, M. Habibnezhad, and H. Jebelli, "Brainwave-driven human-robot collaboration in construction," Autom Constr, vol. 124, 2021, doi: 10.1016/j.autcon.2021.103556.
- M. Zhang, R. Xu, H. Wu, J. Pan, and X. Luo, "Human-robot collaboration for on-site construction," Automation in Construction, vol. 150. 2023. doi: 10.1016/j.autcon.2023.104812.