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Abstract: Construction industry records poor safety records annually due to a large number of injuries 
and accidents on construction jobsite. In order to improve existing safety performance, object detection 
approaches have been extensively studied using vision-sensing techniques and deep learning algorithms. 
Unfortunately, an insufficient number of datasets (e.g., images) and challenges that reside in manually 
collecting quality datasets constitute a significant hurdle in fully deploying object recognition 
approaches in real construction sites. Although advanced technologies (e.g., virtual reality) have 
attempted to address such challenges, they have achieved limited success because they still rely on 
labor-intensive work. A promising alternative is to adopt generative AI-based data augmentation 
methods attributed to their efficiency in creating realistic visual datasets and proven performance. 
However, there remain critical knowledge gaps on how such alternatives can be effectively employed 
by safety managers on real construction sites in terms of practicability and applications. In this context, 
this study establishes a framework that can identify effective strategies for improving object detection 
performance (e.g., accuracy) using generative AI technologies. The outcome of this study will contribute 
to providing guidelines and best practices for practitioners as well as researchers by exploring different 
generative AI-driven augmentation approaches and comparing the corresponding results in a 
quantitative manner. 
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1. INTRODUCTION 

Construction industry has poor safety records, with a large number of injuries and fatalities on 
construction jobsites. To prevent such accidents and improve existing safety performance, monitoring 
unsafe workplace conditions and workers’ risky behaviors has become a critical component in the 
construction safety management domain [1]. The underlying rationale is that the monitoring approach 
allows for recognizing unsafe conditions and unsafe acts—which were identified as two leading causes 
of accidents—and establishing corrective actions to prevent unexpected accidents in the workplace [2]. 
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In the current practice, the safety monitoring process heavily relies on safety managers’ manual 
observations, which are time-consuming, inaccurate, and subjective [3]. Also, the dynamic nature of 
construction jobsites further aggravates the challenges in current practice. In order to address the 
challenges, computer vision technology has been widely used for continuous and automated safety 
monitoring because it can extract information (e.g., locations of hazards) from captured data (e.g., 
images); automate construction processes (e.g., visual inspection); and holds the potential to be applied 
for various tasks [4]. In particular, within the computer vision domain, improving the performance of 
object detection, which aims to recognize the presence of a particular object (e.g., hazard) within an 
image, remains an open challenge due to many factors (e.g., the number/quality of imagery data and 
selected algorithms) contributing to the performance. Among many of these factors, the number of 
imagery data used to train the model is of particular interest because it was found that increasing training 
data led to better detection performance and generalization capability [5]. Unfortunately, collecting a 
large number of high-quality imagery data used to train and test the object-detecting model is a 
challenging task because it usually relies on researchers’ significant manual efforts (e.g., taking photos 
and collecting images via web search). 

A promising alternative is to utilize generative artificial intelligence (Gen-AI) technologies that can 
create auditory, visual, and textual content based on user queries [6]. For example, the text-to-image 
Gen-AI technique can take user prompts as input, understand the context, and generate corresponding 
images in an automated and efficient manner. Several studies have demonstrated the feasibility of 
employing a text-to-image approach to augment imagery data and improve corresponding object 
detection performance [7]. 

However, from a perspective of construction safety management, there remain three gaps in the 
current knowledge base to attain the ultimate goal of fully detecting construction hazards on jobsites 
based on an approach consisting of text-to-image data augmentation and computer vision-based object 
detection. First, despite the importance of fall hazards that were identified as a primary contributor to 
injuries and fatalities, a limited number of studies focused on augmenting fall imagery data (i.e., a scene 
containing fall hazards) using Gen-AI and investigated the feasibility of using them for advanced hazard 
detection. Second, it remains unclear how imagery data can be efficiently augmented using what types 
of prompt engineering techniques. In other words, the relationship between the user’s input that is fed 
into the text-to-image algorithm and the quality of outcome produced by Gen-AI has not been 
thoroughly studied. Third, it is unknown how the augmented imagery data contributes to the object (i.e., 
fall hazard) detection performance. 

To bridge the gaps, this paper aims to assess the feasibility of using Gen-AI (i.e., text-to-image) to 
augment imagery data and investigate how it contributes to object detection performance based on a 
methodology consisting of the following three steps. First, two sets of imagery datasets are constructed 
based on web search and text-to-image approach, respectively; each image illustrates a construction site 
containing a fall hazard (i.e., floor opening) without protection (e.g., safety net). Second, all the imagery 
data points are labeled for object detection experiments. Third, the fall hazard-detecting model is 
developed using the YOLOv8n algorithm. The results of this paper demonstrate the effectiveness of 
using Gen-AI technology to augment a large number of imagery data, revealing that they can improve 
object detection performance. The findings are expected to contribute to advancing Gen-AI and 
computer vision-centered construction safety monitoring and improve existing safety performance. 

2. REVIEW OF RELATED STUDIES 

2.1. Computer Vision and Object Detection 

Computer vision—an interdisciplinary field encompassing varying theories and techniques—aims to 
help computers understand the contents of imagery data collected by sensors (e.g., cameras) [8]. It can 
be used for object detection, classification, visual tracking, image segmentation, etc. Among the above 
various applications, the goal of object detection is to identify a semantic object of interest (e.g., hazard) 
within an image based on a well-established workflow (e.g., data acquisition, preprocessing, and feature 
extraction). Attributed to its unique advantages (e.g., automated extraction of relevant information), 
object detection approaches have been widely adopted within the construction safety domain to detect 
on-site hazards (e.g., falls), assess the absence of personal protective equipment (PPE) on workers, and 
monitor the unsafe behavior of construction workers [9–11]. It was found that many factors (e.g., size 
of datasets, model architecture, and quality of data labeling) contribute to the performance of object 
detection. Among them, the size of the dataset used to train and test the object detector (model) is critical 
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to achieving an acceptable level of detection performance, as demonstrated by previous studies [10]. 
However, collecting a sufficient number of image data is a time-consuming and labor-intensive task as 
it mostly counts on researchers’ manual efforts (e.g., taking photos). This highlights the need to adopt 
data augmentation approaches that will be explained in the following section. 

2.2. Data Augmentation 

Data augmentation, a crucial technique in computer vision and many other fields, artificially expands 
and diversifies a dataset by creating new data points based on existing ones (or from scratch) to enhance 
the model’s performance [12]. Taking image data as an example, augmentation methods can be 
classified into several types, such as geometric transformations (e.g., random rotation, cropping, and 
flipping), photometric transformations (e.g., changing contrast and brightness), etc. [13]. In the 
construction safety field, several studies augmented image data to construct a large-size dataset and 
achieved better performance in detecting various objects (e.g., workers, pipes, and excavators) [14,15]. 
However, existing data augmentation approaches often fail to maintain semantic information, still 
require significant human involvement and guidance, and do not always lead to enhanced performance 
[16]. To address the limitations in existing augmentation approaches, recent research has started to 
harness Gen-AI approaches for image data augmentation, and their effectiveness has been continuously 
studied and reported [17,18]. 

2.3. Generative Artificial Intelligence (Gen-AI) 

Gen-AI is a subfield of artificial intelligence that is capable of creating even novel outputs in response 
to user-provided requests (prompts) [19]. It encompasses a spectrum of approaches, such as text-to-text, 
text-to-image, and text-to-video, all of which generate outputs based on corresponding textual inputs. 
Particularly, the text-to-image method transforms textual descriptions into visual representations 
through several technical components (e.g., deep learning algorithms and encoder-decoder architecture). 
Attributed to its unique advantages and potential, it has been widely adopted for architectural design, 
personalized education, and the creation of challenging test cases for software [20,21]. Some studies 
attempted to leverage the text-to-image approach for imagery data augmentation to improve object 
detection and classification performance [7]. Reviewing the related studies revealed that the quality of 
the generated images largely depends on the selected tools (e.g., Dall-E and Midjourney) and the 
prompts designed by the users. A prompt that comprises multiple components (e.g., word and sentence 
structure) is critical in achieving quality outputs as it serves as guidance that models can follow and 
learn. Well-known prompting techniques include n-shot prompting (where n defines the number of 
examples provided to the input template), structured prompting, and resampling [22]. Since there is no 
universal agreement that one specific prompting technique outperforms others for the given research 
task, identifying the optimal prompting techniques remains a critical challenge that deserves continuous 
research efforts. 

3. METHODOLOGY 

3.1. Data Collection and Augmentation 

Two sets of datasets were constructed based on real images and text-to-video approach, respectively. 
For the first dataset, the images that illustrate a construction site containing a fall hazard were collected 
from search engines (e.g., Google) using various combinations of keywords (e.g., opening, fall hazard, 
and construction site). Both English and Korean were used for the search process. Due to diverse forms 
of fall hazards (e.g., open trenches and wall openings), the authors focused on images that display real 
construction sites where openings without protection (e.g., guardrails and safety nets) could be observed 
on a floor. In addition, the images lacking clarity and exhibiting significant blurring were removed. As 
a result, the first dataset consisted of a total of 100 real images. 

The second dataset was developed by testing several prompt engineering techniques—that focus on 
strategically designing user queries to achieve quality outputs—and leveraging the text-to-image 
approach. Of many publicly available text-to-image platforms (e.g., Midjourney, Dall-E, and Adobe 
Firefly), Midjourney was employed due to its proven capabilities of creating realistic scenes and unique 
features [23]. For example, it can refine resulting outcomes through iterative processes and explore 
different interpretations of the user prompt. In order to maximize the quality of images created by 
Midjourney, the authors tested three prompt engineering techniques (n-shot prompting, structured 
prompting, and Chain-of-Thought) in an exploratory manner. This preliminary experiment revealed that 
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structured prompting, a method that organizes user queries into predefined templates, was the most 
effective approach in generating realistic scenes depicting floor openings lacking proper safety measures 
(Figure 1). As a result, the second dataset comprised 1,000 augmented images; the rationale for creating 
larger data points was that one of the objectives of this paper was to observe the hazard detection 
performance as the number of augmented data increases while training the object detection model. 

 
Figure 1. Example of structured prompting to generate augmented image data 

3.2. Data Annotation 

A total of 1,100 images (100 real images and 1,000 augmented images) were labeled using Roboflow, 
which is a reliable platform that streamlines the process of object labeling in imagery data. During the 
labeling process, the bounding boxes were manually drawn in the area of individual images by assigning 
one class (i.e., opening) representing fall hazards. Note that all imagery data included no more than one 
class, which confirms the existence of a single opening on the construction site within each image. 
Figure 2 presents sample figures of labeled real images and augmented images. 

 
Figure 2. Illustrative examples of dataset images 

3.3. Implementation of YOLO Model 

After labeling the image dataset, an object detection model that can recognize and localize the fall 
hazard was trained using the YOLOv8n (You Only Look Once, version 8 nano) algorithm due to its 
proven performance and computing efficiency [24,25]. Some studies found that YOLOv8n has a faster 
detection speed compared to different versions (e.g., YOLOv8x and YOLOv8m) [26]. The entire dataset 
was randomly split between training, validation, and testing with a 70/15/15 ratio. When training the 
model, hyperparameters (e.g., epoch and learning rate) that can be configured by users were optimized 
by initiating the training process with default values. The optimal hyperparameters were determined 
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through an exploratory approach by testing various parameter combinations and changing the settings, 
ensuring the prevention of both overfitting and underfitting. In addition, when the augmented images 
were used, they were not used for testing since the focus of this study is on how the augmented fall 
hazard data can impact the resulting detection performance that can be observed in the testing set. For 
example, when the augmented 100 images were used along with the 100 real data, the augmented data 
remained on training and validation sets. Google Colab and associated libraries were used for the 
implementation. 

4. RESULTS AND DISCUSSIONS 

To evaluate and compare the fall hazard detection performance using the optimized YOLOv8n model, 
four well-established metrics (precision, recall, mAP50, and mAP50-95) were adopted. Precision is the 
percentage of correctly identified objects with respect to the total number of objects that are identified 
as positive, as shown in Eq. (1). Recall is defined as the ratio of correctly recognized objects to the total 
number of actual objects, as shown in Eq. (2).  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑃𝑃 (𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃)⁄  (1) 

𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑃𝑃 (𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹)⁄  (2) 

where TP indicates the number of true-positive, FP represents the number of false-positive, and FN 
signifies the number of false-negative. 

The mAP is computed by averaging the average precision values of the corresponding class; mAP50 
indicates that the overall detection is correct if predicted bounding boxes overlap with the ground truth 
by at least 50%, and mAP50-95 represents that the overall detection performance is determined based 
on multiple intersection-over-union (IoU) from 50% to 95%. Table 1 illustrates the detection 
performance as the number of augmented data increases while training and testing the model. Note that 
the initial epoch value was set to 500; it increases until no further accuracy improvement is observed. 

Table 1. Comparison of object detection performance 

Case
No. 

Number of 
real data 

Number of 
augmented data Precision Recall mAP50 mAP50-95 Epoch 

1 

100 

0 0.816 0.824 0.794 0.396 184 
2 100 0.857 0.781 0.855 0.552 135 
3 200 0.924 0.809 0.853 0.568 192 
4 300 0.852 0.853 0.854 0.583 115 
5 400 0.931 0.779 0.879 0.59 105 
6 500 0.944 0.914 0.953 0.737 201 
7 600 0.924 0.841 0.900 0.674 196 
8 700 0.922 0.877 0.900 0.689 306 
9 800 0.938 0.882 0.917 0.723 278 
10 900 0.938 0.908 0.946 0.748 351 
11 1,000 0.932 0.904 0.943 0.738 216 

When 100 real images were used without the involvement of augmented images (Case No. 1), the 
model achieved a precision of 81.6%, recall of 82.4%, mAP50 of 79.4%, and mAP50-95 of 39.6%. As 
the number of augmented data increases, the performance continuously changes with some fluctuations. 
Note that the mAP50 is used as the primary measure of object detection performance. In Case No. 2, 
where 100 imagery data generated by Midjourney was used to further enhance the model with 100 
existing real images, the performance increased from 79.4% to 85.5%, as indicated by mAP50 values. 
When 500 augmented data was used in Case No. 6, the model achieved the highest performance of 
95.3%. Further increasing the augmented data points did not lead to a significant improvement. For 
example, although all the augmented imagery data was used in Case No. 11, the mAP50 of 94.3% was 
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observed, which is lower than that of Case No. 6. Figure 3 presents the results by focusing on three 
measures of mAP50, precision, and recall. 

 

 

Figure 3. Performance improvement results 

An in-depth analysis of the results led to the following three observations. First, the use of augmented 
imagery data produced by the text-to-image tool resulted in an improvement in fall hazard detection 
performance in all cases. An average mAP50 of 90.0% was recorded for case No.2-No.11 and mAP50 
of 79.4% was found in No. 1. Although the sample size was not sufficient, this suggests that a data 
augmentation approach based on Gen-AI can be used as a reliable method to address the existing 
limitations that reside in the size of the training set used to develop the detection model, and increase 
the object detection performance. Second, it was found that the number of augmented data points and 
the resulting performance do not shape a linear relationship, as demonstrated by continuous fluctuations 
in Figure 3. It is likely that such a result was due to variations that could be found among augmented 
images in terms of quality, which partially contributed to the model training process and the resulting 
performance. In other words, some realistically generated images could have resulted in accuracy 
improvement, while others negatively impacted the performance. This highlights the future research 
efforts on investigating relationships among the quality of images generated by Gen-AI, the number of 
fused data, and the object detection performance. Third, after examining some of the predictions made 
by the YOLO model (Figure 4), it was found that the model performed well in identifying fall hazards 
for rectangular-shaped openings compared to irregular-shaped openings, as indicated by confidence 
scores, which represent the model’s certainty in its predictions. For example, the confidence score of 
0.6 was recorded in the third example in Figure 4, while relatively high scores of 0.8 and 0.9 were found 
in the first and fourth examples. The model’s performance might be biased towards rectangular fall 
openings due to the prevalence of such shapes in the training data. Similarly, as seen in the second case 
of Figure 4, when the image exhibited relatively low brightness, the performance significantly dropped, 
as indicated by a confidence score of 0.5. 

 

Figure 4. Examples of predictions in the test data 

5. CONCLUSION 
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This paper investigated the feasibility of using the Gen-AI approach to augment imagery data and 
improve computer vision-based object detection performance. Two types of datasets were constructed 
by collecting real images and using text-to-image tools (i.e., Midjourney), respectively. Imagery data 
were labeled, and the YOLOv8n algorithm was used to develop a fall-hazard detection model. The 
testing of the proposed methodology produced several main findings. First, using augmented images 
generated by Gen-AI along with real images led to performance improvement. Particularly, when 500 
augmented images and 100 real imagers were jointly used as input to train the YOLOv8n model, the 
maximum performance (mAP50) of 95.3% was observed. Second, testing different sizes of augmented 
images revealed that the overall performance does not directly increase in proportion to the number of 
input data. This suggests that when utilizing the Gen-AI technique for object detection, identifying an 
optimal number of augmented data points is critical for various research tasks and applications. Third, 
the detection model can show a preference for specific types of objects (e.g., rectangular-shaped) due 
to the overrepresentation of such examples in the training data. In future research, the authors will 
diversify the classes (e.g., hazard, equipment, and human) that the computer vision model can detect, 
explore more prompt engineering techniques, and test different computer vision algorithms.  
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