
LEA 알고리즘을 이용한 MQTT 프로토콜 보안

락스모노 아구스 마하르디카 아리 1, 이크발 무함마드 1, 프라타마 데리 2, 김호원 3
1부산대학교 정보융합공학과 석사과정
2부산대학교 정보융합공학과 박사과정

3부산대학교 정보융합공학과 교수

agusmahardika@pusan.ac.kr, iqbal@islab.re.kr, derryprata@gmail.com, howonkim@pusan.ac.kr

Securing the MQTT Protocol using the LEA Algorithm

Laksmono Agus Mahardika Ari, Iqbal Muhammad, Pratama Derry, Howon Kim

Dept. of Computer Information Convergence Engineering, Pusan National University

Abstract

IoT is becoming more and more popular, along with the massive availability of cheap and easy-to-use IoT

devices. One protocol that is often used in IoT devices is the Message Queuing Telemetry Transport (MQTT)

protocol. By default, the MQTT protocol does not activate encrypted data security features. This MQTT default

feature makes the transmitted and received message data vulnerable to attacks, such as eavesdropping. Therefore,

this paper will design and implement encrypted data security using the lightweight cryptography algorithm. The

focus of this paper will be on securing MQTT message data at the application layer. We propose a method for

encrypting specific MQTT message fields while maintaining compatibility with the protocol's functionalities. The

paper then analyzes the timing performance of the MQTT-LEA implementation on the Raspberry Pi 3+. Our

findings demonstrate the feasibility of using LEA at the application layer to secure MQTT message

communication on resource-constrained devices.

1. Introduction

In the age of the internet, interconnected Internet

of Things (IoT) devices are networked together for the

purpose of collecting and exchanging information.

These devices, especially IoT based smart homes

device, are highly vulnerable to cyber and physical

security attacks [1]. This is because by default the

protocols used on IoT devices do not enable encryption

features, one of which is the Message Queuing

Telemetry Transport (MQTT) protocol. MQTT is a

popular choice for communication in IoT applications.

MQTT has been widely implemented in various

industrial sectors, such as manufacturing, automotive,

sports, energy, military, telecommunications and

healthcare [2]. Its lightweight design and publish-

subscribe architecture make it efficient for resource-

constrained devices to exchange data. However, the

lack of the standard MQTT protocol does not activate

encrypted data security features [3]. If we use the

standard MQTT protocol, the data transmitted between

devices will be vulnerable to eavesdropping, tampering,

and unauthorized access. This makes message content

to potential security breaches during transmission,

risking sensitive data's confidentiality and integrity.

Attackers get attracted to this and want to obtain user

data.

To address this security gap, this paper proposes an

implementation for securing MQTT messages using the

Lightweight Encryption Algorithm (LEA). The LEA is

a lightweight block cipher specifically designed for

resource-constrained environments, making it suitable

for implementation on devices with limited processing

power. Our approach focuses on encrypting specific

MQTT message fields while ensuring compatibility

with the core functionalities of the protocol. The initial

communication process will not be modified for

concern that it will disturb the handshaking process

between the publisher/subscriber and the broker server.

Meanwhile, the decryption of the message on the

subscriber side will be done after the subscriber

connects to the broker with a certain topic and waits for

the publisher's publication message. For the analysis,

we will present timing performance of our

implementation versus conventional MQTT message

delivery times. We also evaluate the impact of

encryption on message transmitting.

ASK 2024 학술발표대회 논문집 (31권 1호)

- 175 -

2. Theoretical Background

2.1 MQTT

Message Queuing Telemetry Transport (MQTT)

is an internet of things (IoT) protocol standard issued

by OASIS. MQTT is a client server publish/subscribe

messaging transport protocol. The server in MQTT is

called a broker, and the MQTT client has two rules, as a

publisher or as a subscriber. It is light weight, open,

simple, and designed to be easy to implement. These

characteristics make it ideal for use in many situations,

including constrained environments such as for

communication in Machine to Machine (M2M) and

Internet of Things (IoT) contexts where a small code

footprint is required and/or network bandwidth is at a

premium [4]. Three qualities of service (QoS) for

message delivery:

a. Q0: "At most once", where messages are delivered

according to the best efforts of the operating

environment. Message loss can occur. This level

could be used, for example, with ambient sensor

data where it does not matter if an individual

reading is lost as the next one will be published

soon after.

b. Q1: "At least once", where messages are assured to

arrive but duplicates can occur.

c. Q2: "Exactly once", where messages are assured to

arrive exactly once. This level could be used, for

example, with billing systems where duplicate or

lost messages could lead to incorrect charges being

applied.

2.2 LEA Algorithm

Block cipher LEA is an algorithm that encrypts

128-bit data blocks. It can use 128-bit, 192-bit, and

256-bit secret keys, and its use can be classified

according to the required safety standards [5]. The

round function of LEA consists only of ARX (Addition,

Rotation, XOR) operations in 32-bit units, so these

operations. It operates at high speed on a general-

purpose 32-bit software platform that supports. Also,

the round function of the internal ARX (Addition,

Rotation, XOR) operation arrangement ensures

sufficient safety and at the same time a lightweight

implementation is possible by excluding the use of S-

box. The structure of LEA has the following features:

a. LEA consists of only ARX (modular Addition,

bitwise Rotation, and bitwise XOR) operations for

32-bit words.

b. The last round function of LEA is the same as other

round functions.

c. The key schedule of LEA has a simple structure

without any interleaving between 32-bit key words.

3. Proposed Design

To implement the LEA algorithm on the MQTT

protocol, we must recognize the mechanism and syntax

of the MQTT protocol. The focus of the LEA

encryption implementation is to secure message

packets at the application layer. Therefore, the

workflow of implementing the LEA algorithm on the

publisher side must consider the message parameters to

be encrypted. If the implementation is incorrect, it will

interfere with the process and workflow of MQTT. The

proposed algorithm flow on the publisher side can be

seen in the following step:

Algorithm 1. MQTT-LEA Publisher Algorithm Flow

Input : MQTT Syntax (S), Message (M)

Output : Encrypted Message (EncM)

1. MQTT_Start(S,M);

 Begin

2. state  M

3. EncM  LEA_EncryptKey (M)

4. MQTT_Publish(EncM, topic, QoS)

 End

5. MQTT_End();

From the flow description above, the publisher

inputs are syntax and message. The syntax contains

programs from the publisher that manage parameters

such as the broker host address, topic, and QoS level of

the message. Meanwhile, the message in the publisher

input is a packet of information delivered by the

user/IoT sensor device to other entities that act as

subscribers. The message will be encrypted using a

128-bit LEA module with a secret key of 128 bits in

length. The secret key has predetermined when the

handshaking phase with the broker has not been

executed. In this research, the broker server is installed

on an Oracle cloud server that has a public IP address.

For the QoS level, if the publisher does not specify

which options are used in the syntax, the MQTT

publisher application will automatically use the default

parameter, which is type Q0.

Algorithm diagram 2 shows the stages that occur

on the client side of the subscriber. After running the

subscriber application with the parameters set by the

ASK 2024 학술발표대회 논문집 (31권 1호)

- 176 -

syntax command, the subscriber will continue to stand

by, waiting for messages sent from the publisher

according to the predetermined topic. If there is an

incoming message with the corresponding topic, the

subscriber will decrypt the message using the 128-bit

LEA module and the symmetric key associated with the

encryption process. The results of the decrypted

message will then be displayed in the subscriber

application interface.

Algorithm 2. MQTT-LEA Subscriber Algorithm

Flow

Input : MQTT Syntax (S), Encrypted Message

(EncM)

Output : Message (M)

1. MQTT_Start(S, EncM);

 Begin

2. MQTT_Subscriber(EncM, topic, QoS)

3. state  LEA_DecryptKey (EncM)

4. M  state

 End

5. MQTT_End();

4. Result and Analysis

The proposed design simulation uses a broker server

installed on a public network. The purpose of this

simulation design is so that the research can be tested in

accordance with real infrastructure conditions. Figure 1

is the simulation architecture design of the research on

the implementation of the LEA algorithm in the MQTT

protocol. The broker server used is the Mosquitto

Broker application [6] which is installed in the

Canonical Ubuntu 22.04 Linux operating system on the

Oracle cloud. The broker server host address also uses

the public IP address provided by the Oracle cloud with

port 1883. The IoT device used is a Raspberry Pi 3b+

device operated using the Linux Raspbian 6.1.21-v7

operating system.

Using the architectural design as shown in Figure 1,

three IoT devices are used to simulate the results of

applying the LEA algorithm module to the MQTT

protocol. Two devices installed the MQTT Client

application using the Paho MQTT Client source code

[7] equipped with the LEA module. Meanwhile, one

device was installed using the standard Paho Client

application. The device without the LEA module is

assumed to be an eavesdropper trying to obtain

sensitive data from the MQTT communication.

Figure 1. Simulation architecture of LEA

implementation in MQTT

Figure 2 showcases an application demonstration

where the encryption and decryption process involving

two LEA-equipped IoT devices successfully secures the

MQTT message exchange. The message content

displayed on a standard MQTT Paho client device,

acting as an eavesdropping simulation, also show that

unauthorized parties will not be able to know the

sensitive data encrypted. This application demonstrates

the success of the proposed application-layer MQTT

security approach using the LEA algorithm. In addition,

testing for message delivery further confirms that

communications encrypted with LEA do not need to be

re-encoded using modules such as base64. This is so

that effective message transmission via the MQTT

protocol can be achieved without the need for

additional encoding stages, as the LEA encryption

process itself produces an output that is string-

formatted.

Figure 2. Simulation of 128-bit LEA implementation in

MQTT

This research compares the usage of processing time

between publisher clients for standard MQTT and

MQTT-LEA. This processing time is recorded from the

publisher successfully connecting with the broker until

the publisher has finished sending the message. The

ASK 2024 학술발표대회 논문집 (31권 1호)

- 177 -

time taken by the LEA module to encrypt and decrypt

messages was also recorded. Two message lengths were

used for testing: 10 characters (10 bytes) with the

message "Hello PNU!" and 16 characters (16 bytes)

with the message "Hello ISLAB-PNU!". Each message

length was sent 20 times, and the average processing

time was calculated. For additional information, the

internet speed used in this simulation is 5.19 MBps for

upload speed and 38.05 MBps for download speed. The

result of research time can be seen in Table 1 and Table

2.

Table 1. Research time data for publish and subscribe

process

Module Publish Time (µs) Subscribe Time (µs)

10 bytes 16 bytes 10 bytes 16 bytes

MQTT

Standard

134.2 137.6 54.8 44.8

MQTT-

LEA

269.45 283.95 112.7 167.9

Ratio 2.008 2.064 2.057 3.748

Table 2. Research time data for encryption and

decryption process

Module Encryption Time (µs) Decryption Time (µs)

10 bytes 16 bytes 10 bytes 16 bytes

MQTT-

LEA

120.5 125.75 98.3 152.4

Table 1 reveals that the publisher time of MQTT with

128-bit LEA has twice as much time compared to

conventional MQTT. This is due to the fact that the

MQTT-LEA module requires additional time to

calculate the message encryption process. As for the

subscriber processing time, the simulation using the 16-

byte character length takes the most additional time-

three and a half times longer than the standard MQTT

subscriber time. Meanwhile, table 2 shows that the

average processing time increases according to the

message length transmitted. It takes longer to send a

16-bit message than a 10-bit message.

5. Conclusion

This research demonstrates that applying LEA at the

application layer effectively secures MQTT messages

on resource-constrained devices. The public network

simulation with multiple IoT devices confirms ability

of LEA to encrypt messages, rendering them

unreadable for eavesdroppers.

6. Future Work

Research can be continued by improving the

performance of the LEA-based MQTT approach in

larger scale IoT development with more devices and

message variations. Comparing results with other

studies that use different cryptographic techniques to

provide MQTT security might also help develop

research. Other potential areas of research include the

dissemination of key management or the application of

dynamic key management to IoT devices that are

connected.

7. Acknowledgement

This work is financially supported by Korea Ministry of

Land, Infrastructure and Transport (MOLIT) as ⸢Innovative

Talent Education Program for Smart City⸥.

Reference

[1] Bako Ali and Ali Ismail Awad, "Cyber and Physical

Security Vulnerability Assessment for IoT-Based Smart

Homes", in Sensors 18, no. 3: 817, 2018.

[2] B. Mishra and A. Kertesz, "The Use of MQTT in M2M

and IoT Systems: A Survey," in IEEE Access vol. 8, 2020.

[3] Ahmed J. Hintaw, Selvakumar Manickam, Mohammed

Faiz Aboalmaaly, and Shankar Karuppayah, "MQTT

vulnerabilities, attack vectors and solutions in the internet

of things (IoT)", IETE Journal of Research 69 No. 6, pp:

3368-3397, 2023.

[4] OASIS. MQTT Version 5.0 Committee Specification 02.

15 May 2018.

[5] Deukjo Hong, Jung-Keun Lee, Dong-Chan Kim,

Daesung Kwon, Kwon Ho Ryu, and Dong-Geon Lee.

“LEA: A 128-Bit Block Cipher for Fast Encryption on

Common Processors”. 14th International Workshop on

Information Security Applications - Volume 8267 (WISA

2013). Pages 3–27.

[6] Eclipse Mosquitto™, An open source MQTT Broker.

Available online: https://mosquitto.org/ (accessd on 8

April 2024)

[7] Eclipse Paho C Client Library for the MQTT Protocol.

Available online: https://github.com/eclipse/paho.mqtt.c

(accessd on 8 April 2024)

ASK 2024 학술발표대회 논문집 (31권 1호)

- 178 -

