Acknowledgement
본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(RS-2024-00345226)
References
- Clevert, Djork-Arne, et al. "Img2Mol-accurate SMILES recognition from molecular graphical depictions." Chemical science 12.42 (2021): 14174-14181. https://doi.org/10.1039/D1SC01839F
- Xu, Zhanpeng, et al. "SwinOCSR: end-to-end optical chemical structure recognition using a Swin Transformer." Journal of Cheminformatics 14.1 (2022): 41.
- Rajan, Kohulan, et al. "DECIMER 1.0: deep learning for chemical image recognition using transformers." Journal of Cheminformatics 13 (2021): 1-16. https://doi.org/10.1186/s13321-020-00477-w
- Qian, Yujie, et al. "MolScribe: Robust Molecular Structure Recognition with Image-to-Graph Generation." Journal of Chemical Information and Modeling, 2023.
- Lee, Dong-Hyun. "Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks." Workshop on challenges in representation learning, ICML. Vol. 3. No. 2. 2013.
- He, Junxian, et al. "Revisiting self-training for neural sequence generation." arXiv preprint arXiv:1909.13788 (2019).
- Amini, Massih-Reza, et al. "Self-training: A survey." arXiv preprint arXiv:2202.12040 (2022).
- Nichol, Alexander Quinn, and Prafulla Dhariwal. "Improved Denoising Diffusion Probabilistic Models" International Conference on Machine Learning. PMLR, 2021
- Weininger, David. "SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules." Journal of chemical information and computer sciences 28.1 (1988): 31-36. https://doi.org/10.1021/ci00057a005
- David Bajusz, et al. "Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations?" Journal of Chemical Information and Modeling 2010. Vol. 50, No. 5, pp.742-754 https://doi.org/10.1021/ci100050t