5G 통신 MAC 스케줄러에 관한 연구

A Study on AI-based MAC Scheduler in Beyond 5G Communication

  • 무니비 무하마드 (상지대학교 컴퓨터공학과) ;
  • 고광만 (상지대학교 컴퓨터공학과)
  • Muhammad Muneeb (Dept. of Computer Engineering, Sangji University) ;
  • Kwang-Man Ko (Dept. of Computer Engineering, Sangji University)
  • 발행 : 2024.05.23

초록

The quest for reliability in Artificial Intelligence (AI) is progressively urgent, especially in the field of next generation wireless networks. Future Beyond 5G (B5G)/6G networks will connect a huge number of devices and will offer innovative services invested with AI and Machine Learning tools. Wireless communications, in general, and medium access control (MAC) techniques were among the fields that were heavily affected by this improvement. This study presents the applications and services of future communication networks. This study details the Medium Access Control (MAC) scheduler of Beyond-5G/6G from 3rd Generation Partnership (3GPP) and highlights the current open research issues which are yet to be optimized. This study provides an overview of how AI plays an important role in improving next generation communication by solving MAC-layer issues such as resource scheduling and queueing. We will select C-V2X as our use case to implement our proposed MAC scheduling model.

키워드

과제정보

This work was supported by the National IT Industry Promotion Agency(NIPA) grant funded by the Korea government(MSIT) (Digital Twin Convergence Medical Innovation Project).

참고문헌

  1. Ali R, Zikria YB, Bashir AK, Garg S, Kim HS. URLLC for 5G and beyond: Requirements, enabling incumbent technologies and network intelligence. IEEE Access 2021;9:67064-95
  2. P. Luong, F. Gagnon, L.-N. Tran, and F. Labeau, "Deep reinforcement learning-based resource allocation in cooperative uav assisted wireless networks," IEEE Transactions on Wireless Communications, vol. 20, no. 11, pp. 7610-7625, 2021. 
  3. E. Bobrov, D. Kropotov, H. Lu, and D. Zaev, "Massive mimo adaptive modulation and coding using online deep learning algorithm," IEEE Communications Letters, 2021. 
  4. H. Huang, Y. Peng, J. Yang, W. Xia, and G. Gui, "Fast beamforming design via deep learning," IEEE Transactions on Vehicular Technology, vol. 69, no. 1, pp. 1065-1069, 2019. 
  5. H. Hojatian, J. Nadal, J.-F. Frigon, and F. Leduc-Primeau, "Unsupervised deep learning for massive mimo hybrid beamforming," IEEE Transactions on Wireless Communications, vol. 20, no. 11, pp. 7086-7099, 2021. 
  6. X. Ye, Y. Yu, and L. FU, "Deep reinforcement learning based mac protocol for underwater acoustic networks," IEEE Transactions on Mobile Computing, 2020. 
  7. A. Ranjha, G. Kaddoum, M. Rahim, and K. Dev, "Urllc in uav-enabled multicasting systems: A dual time and energy minimization problem using uav speed, altitude and beamwidth," Computer Communications, vol. 187, pp. 125-133, 2022. 
  8. D. M. Abdullah and S. Y. Ameen, "Enhanced mobile broadband (embb): A review," Journal of Information Technology and Informatics, vol. 1, no. 1, pp. 13-19, 2021. 
  9. Z. Dawy, W. Saad, A. Ghosh, J. G. Andrews, and E. Yaacoub, "Toward massive machine type cellular communications," IEEE Wireless Communications, vol. 24, no. 1, pp. 120-128, 2016. 
  10. P. Abdisarabshali, N. Accurso, F. Malandra, W. Su, and S. Hosseinalipour, "Synergies between federated learning and O-RAN: Towards an elastic virtualized architecture for multiple distributed machine learning services," arXiv preprint arXiv:2305.02109, 2023. 
  11. A. Ksentini, P. A. Frangoudis, A. PC, and N. Nikaein, "Providing low latency guarantees for slicing-ready 5G systems via two-level MAC scheduling," IEEE J. Netw., vol. 32, no. 6, pp. 116-123, 2018 
  12. Z. Yang, Y.-D. Yao, S. Chen, H. He, and D. Zheng, "Mac protocol classification in a cognitive radio network," in Annual Wireless and Optical Communications Conference (WOCC 2010). IEEE, 2010, pp.1-5. 
  13. Z. Yang, Y.-D. Yao, S. Chen, H. He, and D. Zheng, "Quasi-optimization of distance and blocklength in urllc aided multi-hop uav relay links," IEEE Wireless Communications Letters, vol. 9, no. 3, pp. 306-310, 2019. 
  14. R. Li, Z. Zhao, X. Zhou, G. Ding, Y. Chen, Z. Wang, H. Zhang, Intelligent 5G: When cellular networks meet artificial intelligence, IEEE Wirel. Commun. 24 (5) (2017) 175-183, http://dx.doi.org/10.1109/MWC.2017.1600304WC. 
  15. S. Niknam, H.S. Dhillon, J.H. Reed, Federated learning for wireless communications: Motivation, opportunities, and challenges, IEEE Commun. Mag. 58 (6) (2020) 46-51, http://dx.doi.org/10.1109/MCOM.001.1900461. 
  16. A. N. Alvi, S. H. Bouk, S. H. Ahmed, M. A. Yaqub, M. Sarkar, and H. Song, "Best-mac: Bitmap-assisted efficient and scalable tdma-based wsn mac protocol for smart cities," IEEE Access, vol. 4, pp. 312-322, 2016. 
  17. Garcia MHC, Molina-Galan A, Boban M, Gozalvez J, Coll-Perales B, Sahin T, et al. A tutorial on 5G NR V2X communications. IEEE Commun Surv Tutor 2021. 
  18. Yin H, Zhang L, Roy S. Multiplexing URLLC traffic within eMBB services in 5G NR: Fair scheduling. IEEE Trans Commun 2021;69(2):1080-93. http://dx.doi.org/10.1109/TCOMM.2020.3035582. 
  19. Patriciello N, Lagen S, Bojovic B, Giupponi L. An E2E simulator for 5G NR networks. Simul Model Pract Theory 2019;96:101933. http://dx.doi.org/10.1016/j.simpat.2019.101933, URL https://www.sciencedirect.com/science/article/pii/S1569190X19300589. 
  20. Muller MK, Ademaj F, Dittrich T, Fastenbauer A, Ramos Elbal B, Nabavi A, et al. Flexible multi-node simulation of cellular mobile communications: The vienna 5G system level simulator. EURASIP J Wireless Commun Networking 2018;2018(1). http://dx.doi.org/10.1186/s13638-018-1238-7.