Acknowledgement
본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단(RS-2023-00243075) 및 과학기술정보통신부 및 정보통신기획평가원의 대학ICT연구센터사업(IITP-2023-RS-2023-00259967)의 지원을 받아 수행된 연구임.
References
- T. Pourhabibi, et al., "Fraud detection: A systematic literature review of graph-based anomaly detection approaches," Decision Support Systems, Vol. 133, 113303, 2020.
- L. Akoglu, H. Tong, & D. Koutra, "Graph based anomaly detection and description: asurvey," Data Mining and Knowledge Discovery, Vol. 29, pp. 626-688, 2015. https://doi.org/10.1007/s10618-014-0365-y
- CHATZOGLOU, Efstratios; KAMBOURAKIS, Georgios; KOLIAS, Constantinos. Empirical evaluation of attacks against IEEE 802.11enterprise networks: The AWID3 dataset. IEEE Access, 2021, 9: 34188-34205. https://doi.org/10.1109/ACCESS.2021.3061609
- Yun, Seongjun, et al. "Graph transformer networks." Advances in neural information processing systems 32 (2019).
- WANG, Yue, et al. "Dynamic graph cnn for learning on point clouds." ACM Transactions on Graphics (tog), 2019, 38.5: 1-12. https://doi.org/10.1145/3326362
- Gasteiger, Johannes, Stefan Weissenberger, and Stephan Gunnemann. "Diffusion improves graph learning." Advances in neural information processing systems 32 (2019).