DOI QR코드

DOI QR Code

Implementation of Traffic Light Recognition System based on Image for Autonomous Driving

자율주행을 위한 이미지 기반 신호등 인지시스템 구현

  • Gyeongmin Kim (Dept. of Mechanical & Biomedical, Mechatronics Engineering, Kangwon National University) ;
  • Minhyoung Yoon (Dept. of Mechanical & Biomedical, Mechatronics Engineering, Kangwon National University) ;
  • Byeongseok Ryu (Dept. of Chemical & Biomolecular Engineering, Yonsei University) ;
  • YoungGyun Kim (Convergence Software Lab.)
  • 김경민 (강원대학교 문화예술.공과대학 기계의용.메카트로닉스공학과) ;
  • 윤민형 (강원대학교 문화예술.공과대학 기계의용.메카트로닉스공학과) ;
  • 류병석 (연세대학교 공과대학 화공생명공학과) ;
  • 김영균 (융합소프트웨어랩)
  • Published : 2024.05.23

Abstract

본 논문에서 다양한 환경적 요인에서 촬영한 이미지 데이터를 활용하여 신호등 위치의 정확한 탐지 및 신호등의 색상 인식을 통해 교통 신호를 판별하는데 사용되는 컴퓨터 비전 기반의 신호등 인식 시스템 알고리즘을 제안하였다. 이를 통해 기존에 신호를 인식하던 LiDAR 및 RADAR 센서를 대신해 카메라를 사용함으로써 자율주행 차의 제작비용 감소를 기대할 수 있다. 또한 다양한 환경의 이미지 데이터를 통해 실험을 진행하였고 이러한 실험결과를 분석하고 적용함으로써 악천후에서의 효과적인 신호등 인식 시스템을 구축하는데 기여하고자 한다.

Keywords

References

  1. Wang, Pengwei, et al. "Research on driving behavior decision making system of autonomous driving vehicle based on benefit evaluation model."Archives of transport, pages 1-3, 2020.
  2. "Global status report on road safety 2023" , World Health Organization, 2023, https://www.who.int/publications/i/item/9789240086517
  3. Yurtsever, Ekim, et al. "A survey of autonomous driving: Common practices and emerging technologies."IEEE access8, 2020
  4. Nastjuk, Ilja, et al. "What drives the acceptance of autonomous driving? An investigation of acceptance factors from an end-user's perspective."Technological Forecasting and Social Change, 2020
  5. Levinson, Jesse, et al. "Towards fully autonomous driving: Systems and algorithms."2011 IEEE intelligent vehicles symposium (IV). IEEE, 2011.
  6. Levinson, Jesse, et al. "Traffic light mapping, localization, and state detection for autonomous vehicles."2011 IEEE International Conference on Robotics and Automation. IEEE, 2011.
  7. Li, Ziyue, et al. "An improved traffic lights recognition algorithm for autonomous driving in complex scenarios."International Journal of Distributed Sensor Networks, 2021
  8. Sudhakar, P., K. Anitha Sheela, and M. Satyanarayana. "Imaging Lidar system for night vision and surveillance applications."2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS). IEEE, 2017.
  9. Kutila, Matti, et al. "Automotive LiDAR performance verification in fog and rain."2018 21st International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2018.
  10. Y. Li and J. Ibanez-Guzman, "Lidar for Autonomous Driving: The Principles, Challenges, and Trends for Automotive Lidar and Perception Systems," in IEEE Signal Processing Magazine, vol. 37, no. 4, pp. 50-61, July 2020 https://doi.org/10.1109/MSP.2020.2973615
  11. Wang, Peide. "Research on comparison of LiDAR and camera in autonomous driving."Journal of Physics: Conference Series. Vol. 2093. No. 1. IOP Publishing, 2021.
  12. This research used datasets from 'The Open AI Dataset Project (AI-Hub, S. Korea)'. All data information can be accessed through 'AI-Hub (www.aihub.or.kr)'.
  13. Ong, Prane Mariel B., and Eric R. Punzalan. "Comparative analysis of RGB and HSV color models in extracting color features of green dye solutions."DLSU Research Congress. 2014.