Acknowledgement
이 논문은 2024년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No.2021-0-01806, 스마트공장 보안 내재화 및 보안관리 기술 개발)
References
- S. He, J. Zhu, P. He and M. R. Lyu, "Loghub: A large collection of system log datasets towards automated log analytics," arXiv:2008.06448, 2020.
- J. Lou, Q. Fu, S. Yang, Y Xu and J. Li, "Mining invariants from console logs for system problem detection," ATC'10: Proc. of the USENIX Annual Technical Conference, Boston, USA, Jun. 2010.
- W. Meng et al., "LogAnomaly: Unsupervised detection of sequential and quantitative anomalies in unstructured logs," Proc. 28th Int. Joint Conf. Artif. Intell. (IJCAI), Vienna, Austria, Aug. 2019, pp. 4739-4745.
- X. Zhang et al., "Robust log-based anomaly detection on unstable log data," Proc. 27th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Foundations Softw. Eng., Tallinn, Estonia, Aug. 2019, pp. 807-817.
- S. Chen and H. Liao, "BERT-log: Anomaly detection for system logs based on pre-trained language model," Appl. Artif. Intell., vol. 36, no. 1, pp. e2145642-1-e2145642-23, Dec. 2022. https://doi.org/10.1080/08839514.2022.2145642
- M. Du, F. Li, G. Zheng and V. Srikumar, "Deeplog: Anomaly detection and diagnosis from system logs through deep learning", ACM SIGSAC conference on computer and communications security, Dallas, USA, Oct. 2017, pp. 1285-1298.
- J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, "BERT: Pre-training of deep bidirectional transformers for language understanding," Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics, Minneapolis, Jun. 2019, USA, pp. 4171-4186.