
1. Introduction

Memory bugs occupy a large proportion

of software vulnerabilities, and related attacks are

commonplace. Most existing programming

languages are inherently unsafe, and do not

guarantee memory safety out-of-the-box.

Patch-based solutions such as compiler-based

static analysis and instrumentation have been

proposed but most of them either incur high

overhead or are too resource intensive to be

applied in production. In 2017, Rust emmerged as

a safe programming language that guarantees

memory safety out-of-the-box, while offering

competitive performance, close to unsafe

languages. It achieves this by relying on the

compiler to enforce memory safety rules, which

when broken, the compilation process completely

fails. For this, it has gained popularity, to the

extent the United States NSA recommended

future software be written in Rust.

However, incorporating Rust in existing

codebases has become a challenge. The amount of

software in circulation already in production is too

much to rewrite in Rust. For example, most

existing operating systems, including the Linux

Kernel, libraries and performant programs were

written in C/C++, a language plagued by memory

bugs. As a result, it became inevitable for Rust

to coexist and interoparate with existing unsafe

languages. Rust provides a separate mode, unsafe

Rust, which not only allows programmers to

write code that foregoes memory safey rules, but

also allows for calling functions written in other

languages – the foreign function interface (FFI).

With this, Rust written functions can call and be

called by, foreign functions.

However, foreign functions operate

outside of Rust’s memory safety rules. Thus, their

unsafety can permeate Rust’s otherwise safe code,

compromising its safety guarantees. Therefore,

isolation between Rust and FFI execution

becomes paramount to maintaining Rust’s memory

Rust 언어와의 외부 함수 인터페이스 격리
연구방향에 관한 연구

커욘도마틴1,4, 유준승1,4, 최진명2,4, 백윤흥3,4
1서울대학교 전기정보학부 박사과정
2서울대학교 전기정보학부 석사과정
3서울대학교 전기정보학부 교수

4반도체 공동연구소
kymartin@sor.snu.ac.kr, jsyou@sor.snu..ac.kr, jmchoi@sor.snu.ac.kr ypaek@snu.ac.kr

Assessing The Landscape: A Survey on Foreign
Function Interface Isolation in Rust

Martin Kayondo1,2, Junseung You1,2, Jinmyeong Choi1,2, Yunheung Paek1,2
1Dept. of Electrical and Computer Engineering, Seoul National University

2Inter-University Semiconductor Research Center, Seoul National University

Abstract
Rust has gained recognition for its emphasis on and commitment to providing memory safety.
However, seamlessly integrating it with Foreign Function Interfaces (FFIs) written in unsafe
languages remains a significant challenge towards achieving complete memory safety. To address
this challenge, researchers have proposed Foreign Function Isolation as a potential solution,
leading to emergence of various approaches in this domain. This paper critically evaluates
existing solutions and illuminates the gaps that need to be addressed to realize practical foreign
function isolation in Rust.

ASK 2024 학술발표대회 논문집 (31권 1호)

- 310 -



safety.

In this paper, we analyze existing FFI

isolation schemes and shed a light on the gaps

yet to be addressed. In particular, we study

XRust[1], TRust[2], PKRU-Safe[3], SandCrust[4]

and Galeed[5] for our assessment. Our goal is to

offer a comprehensive assessment of the

practicality and feasibility of current solutions in

effectively isolating FFI, and thus their ability to

enhance Rust’s memory safety.

(Figure 1) FFI Isolation and Rust Memory

Protection

2. Foreign Function Isolation Schemes

Existing FFI isolation mechanisms

isolation FFI execution through memory isolation.

The rationale is that memory used exclusively by

Rust should be protected and isolated from the

used by FFI as shown in Figure 1. Depending on

the policy, memory shared between FFI and Rust

maybe always accessible to FFI or controlled

environment where FFI makes shared memory

access requests to Rust maybe offered. All

isolation solutions aspire to solve the following

challenges:

C1: Identifying memory exclusively used by Rust

– the safe Vs unsafe objects.

C2: Allocating memory in isolated spaces.

C3-1: Realizing memory isolation during

execution.

C3-2: In case of controlled shared access,

identifying memory access points in FFI that

require access permission from Rust, and

implementing a request/response mechanism for

access permissions between Rust and FFI.

2.1 Solutions to the Challenges:

C1: Identifying memory exclusively used by

Rust: To solve this challenge, XRust requires the

programmer to manually identify objects shared

by Rust to FFI, and thus, indirectly identifying

safe memory objects. This approach has no false

positives, as the developer only selects objects

they have confirmed to be unsafe. However, for

large codebases, it proves impractical, as it

requires too many manhours to analyze code

manually. As a result, many unsafe objects

remain unclassified, presenting false negatives.

TRust and Galeed perform compiler-based static

data-flow analysis to automatically identify safe

and unsafe objects. While this approach

theoretically outperforms manual identification,

static data-flow analysis surffers from imprecision

and incompleteness. Worse more, for large

codebases, static analysis tools raise the compile

time budget. For example, TRust takes days to

fully analyze servo, and as reported, it suffers

from false positives and negatives even for mere

libraries. Finally, PKRU-Safe performs a dynamic

profiling test-run to identify unsafe objects before

actually executing the program. On surface, this

seems like the best solution, but it is only

practical in development. It is impossible to

anticipate user input to build credible profile input

at development phase. SandCrust requires the

developer to manually sandbox blocks of code

that are deemed unsafe and m,ay interact with

FFI. Like XRust, this is manual and suffers from

similar drawbacks.

C2: Allocating memory in isolated spaces:

After identifying safe and unsafe objects, the next

challenge is allocating their memory in isolated

regions. XRust, PKRU-Safe and Galeed rely on a

specialized allocator that allocates memory in two

separate regions depending on a developer set

flag. One region is reserved for safe memory.

This design requires developers intending to apply

any of these solutions to use the accompanying

allocator or modify one following the

specifications in these works. TRust uses two

ASK 2024 학술발표대회 논문집 (31권 1호)

- 311 -



memory allocators, one for safe objects and the

other for unsafe ones. It then instruments rust

programs to redirect safe object allocation to the

safe allocator. Unsafe object allocations will are

left to call the original malloc functions and hence

go to the unsafe allocator. TRust mininally

modifies the allocators to allocate only from

specific address spaces, and the safe allocator to

additionally protect its pages with Intel MPK.

SandCrust allocates Rust/FFI shared objects in a

process shared memory region, and executes FFI

in a separate process. Thus SandCrust provides

the easiest adoptable solution in this aspect as no

modification to the allocator is required.

C3: Memory Isolation and Access Control

C3-1: A solution to this challenge defines the

security level provided and the performance

guarantees. XRust provides no further isolation

mechanism beside allocating unsafe objects in a

separate region. TRust, PKRU-Safe and Galeed

protect the safe memory region using

hardware-based Intel MPK. The isolation provided

is performant as it is enforced through register

modification and special instructions. Since Intel

MPK provides for intra-process isolation, TRust

and PKRU-Safe guarante low performance

overhead. Galeed’s performance overhead due to

memory isolation is not guaranteed, because it

depends on the shared memory accesses in FFI

as explained under C3-2. SandCrust relies on

sandboxing FFI in a separate process and lets the

operating system handle memory isolation.

However, this design requires IPC for shared

memory, rendering SandCrust performance heavy.

C3-2: Among all solutions above, only Galeed

attempts to reduce the granularity of access to

shared memory per object. Once an object is placed

in the shared/unsafe memory region by TRust,

XRust, PKRU-Safe or SandCrust, no further

guarantees on its safety are provided. In

otherwords, any memory bug in FFI can be used to

illegally access all memory objects in the unsafe

region using authorization given from one memory

object. Therefore, these solutions only guarantee

that FFI cannot access the safe memory region, but

no further safety guarantees are provided for

objects stored in the unsafe/shared region. Galeed

identifies that allowing FFI to have access to the

whole unsafe region is problematic. For this,

officially, Galeed has no shared objects. Memory

used by FFI is strictly isolated from that used by

Rust. If Rust needs to share a pointer to its

memory with FFI, Galeed instead shared a

pseudo-pointer, and instruments all FFI code that

accesses the intended pointer to use the

pseudo-pointer. Memory access through the

pseudo-pointer is a request/response process, where

FFI code requests access from Rust, and Rust

performs necessary safety checks before granting

access. Such checks include bounds and liveness

checking on the pointer, while access is granted by

enable MPK access (read or write as requested by

FFI). Although this ensures finer granular

protection and temporal sharing, repeatedly

requesting access increases performance overhead.

Additionally, instrumenting FFI requires availability

of FFI source code. For cases where FFI source is

unavailable, analysis and instrumentation is

impossible, and thus Galeed must share the pointer

as is, instead of a pseudo-pointer. Furthermore, FFI

instrumentation requires data-flow analysis, which

may not be complete. In this case, FFI will raise

access errors on uninstrumented pointers, rendering

Galeed only applicable for debug purposes and not

in production.

3. Missing Pieces and Discussion

Among the solutions assessed above,

none of them provides complete isolation between

safe and unsafe objects. XRust not only relies on

the developer to identify objects shared with FFI

but also does not provide any further memory

protection of safe memory objects from FFI.

TRust relies on LLVM-based data-flow analysis

to identify safe and unsafe objects. This analysis,

as reported is incomplete and imprecise, thus

some objects maybe incorrectly classified.

PKRU-Safe relies on program profiling to identify

ASK 2024 학술발표대회 논문집 (31권 1호)

- 312 -



unsafe objects, which is impractical for production

purposes. XRust, TRust, PKRU-Safe and

SandCrust provide no further protection for

objects shared between FFI and Rust, while the

solution provided by Galeed is incomplete and has

a high performance overhead.

Based on this analysis, we identify several

challenges yet to be tackled in this area. Firstly,

identifying unsafe and safe objects requires a

balance between applicability and completeness.

Profiling is accurate and complete, but only

depends on specific input, while static analysis is

both incomplete and imprecise. Thus, there is

need for a solution that strikes a balance between

static instrumentation and dynamic classification

of unsafe and safe objects. Secondly, there is

need for a finer granular solution, that can protect

individual objects instead of a whole class. Our

speculation is that TRust and PKRU-Safe fail to

provide such a solution due to their reliance on

MPK, which is page granular. Although Galeed

attempts to do better than the former two, its

solution does not apply to binary FFI and data

flow analysis on FFI source code may be

incomplete or imprecise. Thus, a performant

solution that can protect shared objects

individually and temporarily, and is applicable in

production is necessary. Finally, none of these

works pays attention to Rust smart pointers.

Smart pointers are a special part of Rust,

providing runtime memory bug prevention, yet

relying on metadata stored with program data.

Therefore, a full solution enhancing Rust memory

security in this direction must account for

protection of smart pointer metadata.

4. Conclusion

In this paper we assess existing solutions

for isolating Rust and FFI memory objects. We

study and evaluate four existing works on the

topic and provide a direction for future works. We

find that existing solutions are either incomplete,

impractical or incur high overhead. We therefore

identify focus points for any future works

attempting to provide solutions or improvements

on existing works.

References

[1] Liu, Peiming, Gang Zhao, and Jeff Huang,

"Securing unsafe rust programs with XRust.",

Proceedings of the ACM/IEEE International

Conference on Software Engineering, 42nd, 2020,

pp 234-245.

[2] Bang I, Kayondo M, Moon H, Paek Y,

{TRust}: A Compilation Framework for In-process

Isolation to Protect Safe Rust against Untrusted

Code, USENIX Security Symposium (USENIX

Security 23), 32nd , 2023, pp. 6947-6964.

[3] Kirth P, Dickerson M, Crane S, Larsen P,

Dabrowski A, Gens D, Na Y, Volckaert S, Franz

M, PKRU-Safe: Automatically locking down the

heap between safe and unsafe languages,

Proceedings of the European Conference on

Computer Systems, 17th, pp. 132-148.

[4] Lamowski B, Weinhold C, Lackorzynski A,

Härtig H, Sandcrust: Automatic sandboxing of

unsafe components in rust. Proceedings of the

Workshop on Programming Languages and

Operating Systems, 9th, 2017, pp. 51-57.

[5] Rivera E, Mergendahl S, Shrobe H, Okhravi

H, Burow N. Keeping safe rust safe with galeed.

Proceedings of the Annual Computer Security

Applications Conference, 37th, pp. 824-836.

Acknowledgement

This work was supported by the National
Research Foundation of Korea(NRF) grant funded
by the Korea government(MSIT)
(RS-2023-00277326). This work was supported by
the BK21 FOUR program of the Education and
Research Program for Future ICT Pioneers, Seoul
National University in 2024. This work was
supported by Inter-University Semiconductor
Research Center (ISRC). This work was
supported by Institute of Information &
communications Technology Planning &
Evaluation (IITP) under the artificial intelligence
semiconductor support program to nurture the
best talents (IITP-2023-RS-2023-00256081) grant
funded by the Korea government(MSIT).

ASK 2024 학술발표대회 논문집 (31권 1호)

- 313 -




