
 A Study on Defense Technique

Against Use-After-Free Attacks Using MTE

Yunseong Hwang*, Junseung You* Yunheung Paek*

*Dept. of Electrical and Computer Engineering and Inter-University Semiconductor Research

Center(ISRC), Seoul National University

yshwang@sor.snu.ac.kr, jsyou@sor.snu.ac.kr, ypaek@snu.ac.kr

MTE를 활용한 사용 후 해제 공격 방어기법 연구

황윤성*, 유준승*, 백윤흥*

*서울대학교 전기정보공학부, 반도체공동연구소

Abstraction

The Use-after-free (UAF) bug is a long-standing temporal memory safety issue. To prevent UAF attacks, two

commonly used approaches are lock-and-key and pointer nullification. Recently, ARM architecture supports the

Memory Tagging Extension (MTE) that implemented a lock-and-key mechanism using a 4-bit tag during memory

access. Previous research proposed a virtual address tagging scheme utilizing MTE to prevent UAF attacks. In this

paper, we aimed to measure a simplified version of the previously proposed virtual address tagging scheme on real

machines supporting MTE by implementing a simple module and conducting experiments.

1. Introduction

Use-after-free (UAF) bug is a temporal memory safety

violation. If a pointer whose referent chunk have been freed

still exists, such pointer is referred to dangling pointer.

Dereferencing dangling pointers is used to perform erroneous

memory accesses and causes UAF bugs. Many UAF bugs [1,

2, 3] exists though the mitigation endeavors [4, 5, 6, 7, 8].

Lock-and-key and pointer nullification are two conventional

approaches to prevent UAF attacks. For the former [11, 12],

the lock is set on the object, while the key is assigned to the

pointer. For each object access, a lock-and-key match process

occurs, where the key provided by the pointer is compared

with the lock on the referent object. The latter [6, 7] is

employed to eliminate the possibility of dereferencing

dangling pointers by removing their links to freed chunks.

Recent ARM architectures, starting from ARMv8.5 [9],

introduced the Memory Tagging Extension (MTE) as a

hardware feature. MTE involves setting a 4-bit tag on both

memory and pointers, implementing a lock and key access

mechanism. During memory access, a tag match procedure is

performed, where the tag of the pointer is compared with the

tag of the memory. If the tags match, access is granted;

otherwise, it is considered as malicious memory access and

an exception is raised.

In a previous study by [10], a proposed virtual address

tagging scheme leveraged MTE for preventing UAF attacks

and an emulation is conducted.

This paper implements a simple module on real MTE

supporting machine to measure the simplified version of the

aforementioned virtual address tagging scheme. Through the

addition of MTE-related operations to the malloc and free

functions, a method for UAF prevention utilizing MTE was

implemented.

Experimental result demonstrated successful prevention of a

simple UAF attack by dereferencing dangling pointers.

Furthermore, we evaluated the performance overhead

induced by the additional MTE-related operations on gcc and

mcf benchmarks from SPEC2006. For gcc, there was a -0.5%

overhead, while for mcf, there was a 3.9% overhead.

2. Backgrounds

2.1 Use-After-Free (UAF) bug

ASK 2024 학술발표대회 논문집 (31권 1호)

- 279 -

Use-After-Free bugs are vulnerabilities that exploit arbitrary

memory access and control flow hijacking via dereferencing

dangling pointers. Dangling pointers refer to the pointers still

pointing to a freed heap chunk. If the freed chunk holds

sensitive data or a critical function pointer (e.g., a function

pointer that invokes a sensitive system call), an attacker can

perform malicious memory access and intercept control flow

to execute the attacker’s arbitrary code.

2.2 Existing UAF prevention approach

2.2.1 Lock-and-Key

In the lock and key scheme, a lock is assigned to every

memory allocation, and a key is assigned to a corresponding

valid pointer. These lock and key pairs form the basis for

verifying any potentially malicious attempts during pointer

dereferencing for memory access. If the key provided by the

pointer does not match the lock assigned to the memory, it is

deemed invalid, leading to the generation of an exception.

This mechanism ensures that only valid pointers with

matching keys can access the corresponding memory regions,

preventing unauthorized or malicious memory accesses.

2.2.2 Pointer Nullification

Pointer nullification is an intuitive method for mitigating the

risks associated with dangling pointers. Use-After-Free

(UAF) attacks occur when dangling pointers are

dereferenced. However, by nullifying dangling pointers, any

subsequent attempt to dereference them would result in a

segmentation fault due to null pointer dereferencing, thereby

preventing the exploitation of dangling pointers.

2.3 Memory Tagging Extension (MTE)

ARM introduced the Memory Tagging Extension (MTE) as

part of the Armv8.5 architecture. MTE aims to improve the

security by detecting and mitigating memory-related

vulnerabilities.

Figure 1. memory access mechanism of ARM memory

tagging extension

As shown in Figure 1, MTE supports two types of tags:

pointer tags and memory tags. Pointer tags are assigned to

56~59 bits of each pointer’s virtual address. Memory tags are

assigned to each 16B (or 32B) memory block and stored

separately. MTE uses an underlying lock and key mechanism

to access memory. If memory tag(lock) and pointer tag(key)

do not match, a memory access violation occurs and an error

is raised. MTE adds special instructions (e.g., irg, stg, ldg,

addg, etc.) to explicitly perform tag-related operations.

Furthermore, the pointer tag is implicitly propagated through

pointer arithmetic to other pointers which referencing the

same object.

MTE provides two operation modes: synchronous (SYNC)

mode and asynchronous (ASYNC) mode. In SYNC mode, a

mismatch between the tag in the pointer and the tag in

memory causes a synchronous exception. SYNC mode

prioritizes the accuracy of error detection and endures

performance overhead. In ASYNC mode, the processor

continues execution despite a tag mismatch. Opposed to

SYNC mode, ASYNC mode is optimized for performance

over the accuracy of error detection. A recent linux kernel

[13] supports MTE by generating SIGSEGV. This procedure

uses a code, SEGV_MTESERR (i.e., synchronous error) at

the SYNC mode or SEGV_MTEAERR (i.e., asynchronous

error) at the ASYNC mode.

3. Threat Model

We assume that a program running with our design has UAF

vulnerabilities. The attacker can exploit those by leveraging

dangling pointers. Other memory attacks, such as buffer

ASK 2024 학술발표대회 논문집 (31권 1호)

- 280 -

overflow and type confusion, are out of scope. So, our

module is guaranteed not to be modified by attackers.

4. Design

We implemented a simple module that intercepts malloc and

free from application and performs some tag-related

operations.

4.1 Overview

Figure 2. Overall design

Our overall design is depicted in Figure 2. Simple module is

placed between the application and the memory allocator.

When an application sends malloc or free request to the

allocator, the module hooks the request and performs tag-

related operations for each request. For malloc, the module

first invokes the real memory allocator’s malloc function.

Then, the module assigns initial random tag to the returned

pointer with irg instruction and sets the same tag number to

its referent memory chunk with stg instruction. By doing so,

the pointer and its referent memory chunk have the same

random tag number. After setting the tag for the pointer and

memory chunk, module returns the pointer to the application.

For free call, similar to malloc call, the module intercepts the

request. Then, the module increments the referent memory

chunk by 1 and performs the real memory allocator’s free

function sequentially.

4.2 UAF prevention through MTE

Figure 3. UAF prevention by tag matching. For memory

allocation request, the random tag number is assigned.

The tag number is incremented when freeing the object.

As shown in Figure 3, our simple module utilizing MTE

prevents UAF attack by tag matching. As discussed in

Section 4.1, the module performs some tag-related operations

for malloc and free request of the application. When the

application calls malloc to request an object, the random tag

number is assigned to both the returned pointer and its

referent memory chunk. The tag of the memory chunk is

incremented by 1 for free call. After free, if a dangling

pointer tries to access the freed chunk, a tag mismatch occurs

since the freed memory chunk’s tag incremented while the

dangling pointer’s tag is unchanged. As a result, an exception

is raised.

5. Experiment

The experiment was conducted on a Pixel 8 Android device

that supports MTE. Our module was implemented on the

device. Simple UAF attack that dereferences a dangling

pointer after freeing was examined and performance

measurements were conducted on the gcc and mcf

benchmarks from SPEC2006.

An exception was raised when we conducted the simple UAF

attack. We observed that our module could prevent the

possibility of dereferencing the dangling pointer after freeing

by incrementing the tag number of the freed memory chunk.

For gcc, there was approximately a -0.5% overhead, while

for mcf, there was around a 3.9% overhead. Considering that

the operation of the module is the insertion of one irg and stg

instruction for malloc and one stg instruction for free call, the

performance overhead attributed to this was not significant in

the overall application performance and other factors could

have influenced the results.

Figure 4. Performance measurement on gcc and mcf

benchmarks

ASK 2024 학술발표대회 논문집 (31권 1호)

- 281 -

6. Limitation

Tagging a pointer with a random tag can introduce the

possibility of a UAF attack. If an attacker’s randomly

assigned pointer tag coincidentally matches the memory tag

of a freed chunk containing secret data, the attacker could

manipulate the pointing address of the pointer to point to the

freed chunk containing the secret data. Consequently, the

attacker could pass tag matching procedure and access the

secret data.

7. Conclusion

We implemented a simplified version of the virtual address

tagging scheme proposed in previous research on a real

machine supporting MTE. We examined its effectiveness in

preventing simple UAF attack and evaluated its performance

on several benchmarks of SPEC2006. However, simply

setting a random tag had some security pitfalls, and it was

deemed necessary to have a more sophisticated tag setting

and management system. Through this, research on a module

capable of preventing complex UAF attacks should continue,

as it remains crucial.

8. Acknowledgement

This work was supported by the BK21 FOUR program of the

Education and Research Program for Future ICT Pioneers,

Seoul National University in 2024. This work was supported

by Institute of Information & communications Technology

Planning & Evaluation (IITP) under the artificial intelligence

semiconductor support program to nurture the best talents

(IITP-2023-RS-2023-00256081) grant funded by the Korea

government(MSIT). This work was supported by the

National Research Foundation of Korea(NRF) grant funded

by the Korea government(MSIT) (RS-2023-00277326). This

work was supported by Inter-University Semiconductor

Research Center (ISRC).

References

[1] CVE-2024-31083 https://nvd.nist.gov/vuln/detail/CVE-

2024-31083

[2] CVE-2024-3299 https://nvd.nist.gov/vuln/detail/CVE-

2024-3299

[3] CVE-2024-26801 https://nvd.nist.gov/vuln/detail/CVE-

2024-26801

[4] Van Der Kouwe, E., Nigade, V., & Giuffrida, C. (2017,

April). Dangsan: Scalable use-after-free detection. In

Proceedings of the Twelfth European Conference on

Computer Systems (pp. 405-419).

[5] Caballero, J., Grieco, G., Marron, M., & Nappa, A. (2012,

July). Undangle: early detection of dangling pointers in use-

after-free and double-free vulnerabilities. In Proceedings of

the 2012 International Symposium on Software Testing and

Analysis (pp. 133-143).

[6] Lee, B., Song, C., Jang, Y., Wang, T., Kim, T., Lu, L., &

Lee, W. (2015, February). Preventing Use-after-free with

Dangling Pointers Nullification. In NDSS.

[7 9] Ainsworth, S., & Jones, T. M. (2020, May). MarkUs:

Drop-in use-after-free prevention for low-level languages. In

2020 IEEE Symposium on Security and Privacy (SP) (pp.

578-591). IEEE.

[8] Erdős, M., Ainsworth, S., & Jones, T. M. (2022,

February). MineSweeper: a “clean sweep” for drop-in use-

after-free prevention. In Proceedings of the 27th ACM

International Conference on Architectural Support for

Programming Languages and Operating Systems (pp. 212-

225).

[9] ARM Limited, ‘‘Armv8.5-A memory tagging extension,’’

White Paper, 2021.

[10 15] Bang, I., Kayondo, M., You, J., Kwon, D., Cho, Y., &

Paek, Y. (2023). Enhancing a Lock-and-key Scheme with

MTE to Mitigate Use-After-Frees. IEEE Access.

[11] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S.

dancewic, ‘‘CETS: Compiler enforced temporal safety for

C,’’ in Proc. Int. Symp. Memory Manage., Jun. 2010, pp. 31–

40.

[12] T. H. Y. Dang, P. Maniatis, and D. Wagner, ‘‘Oscar: A

practical pagepermissions-based scheme for thwarting

dangling pointers,’’ in Proc. 26th USENIX Secur. Symp.,

2017, pp. 815–832.

[13] Memory Tagging Extension User-Space Support, 2020.

[Online]. Available: https://lore.kernel.org/linux-arm-

kernel/20200703153718.16973-1-catalin.marinas@arm.com

ASK 2024 학술발표대회 논문집 (31권 1호)

- 282 -

