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Abstraction 

The Use-after-free (UAF) bug is a long-standing temporal memory safety issue. To prevent UAF attacks, two 

commonly used approaches are lock-and-key and pointer nullification. Recently, ARM architecture supports the 

Memory Tagging Extension (MTE) that implemented a lock-and-key mechanism using a 4-bit tag during memory 

access. Previous research proposed a virtual address tagging scheme utilizing MTE to prevent UAF attacks. In this 

paper, we aimed to measure a simplified version of the previously proposed virtual address tagging scheme on real 

machines supporting MTE by implementing a simple module and conducting experiments. 

 

 

1. Introduction 

Use-after-free (UAF) bug is a temporal memory safety 

violation. If a pointer whose referent chunk have been freed 

still exists, such pointer is referred to dangling pointer. 

Dereferencing dangling pointers is used to perform erroneous 

memory accesses and causes UAF bugs. Many UAF bugs [1, 

2, 3] exists though the mitigation endeavors [4, 5, 6, 7, 8]. 

Lock-and-key and pointer nullification are two conventional 

approaches to prevent UAF attacks. For the former [11, 12], 

the lock is set on the object, while the key is assigned to the 

pointer. For each object access, a lock-and-key match process 

occurs, where the key provided by the pointer is compared 

with the lock on the referent object. The latter [6, 7] is 

employed to eliminate the possibility of dereferencing 

dangling pointers by removing their links to freed chunks. 

Recent ARM architectures, starting from ARMv8.5 [9], 

introduced the Memory Tagging Extension (MTE) as a 

hardware feature. MTE involves setting a 4-bit tag on both 

memory and pointers, implementing a lock and key access 

mechanism. During memory access, a tag match procedure is 

performed, where the tag of the pointer is compared with the 

tag of the memory. If the tags match, access is granted; 

otherwise, it is considered as malicious memory access and 

an exception is raised. 

In a previous study by [10], a proposed virtual address 

tagging scheme leveraged MTE for preventing UAF attacks 

and an emulation is conducted. 

This paper implements a simple module on real MTE 

supporting machine to measure the simplified version of the 

aforementioned virtual address tagging scheme. Through the 

addition of MTE-related operations to the malloc and free 

functions, a method for UAF prevention utilizing MTE was 

implemented. 

Experimental result demonstrated successful prevention of a 

simple UAF attack by dereferencing dangling pointers. 

Furthermore, we evaluated the performance overhead 

induced by the additional MTE-related operations on gcc and 

mcf benchmarks from SPEC2006. For gcc, there was a -0.5% 

overhead, while for mcf, there was a 3.9% overhead. 

 

2. Backgrounds 

2.1 Use-After-Free (UAF) bug 
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Use-After-Free bugs are vulnerabilities that exploit arbitrary 

memory access and control flow hijacking via dereferencing 

dangling pointers. Dangling pointers refer to the pointers still 

pointing to a freed heap chunk. If the freed chunk holds 

sensitive data or a critical function pointer (e.g., a function 

pointer that invokes a sensitive system call), an attacker can 

perform malicious memory access and intercept control flow 

to execute the attacker’s arbitrary code. 

 

2.2 Existing UAF prevention approach 

2.2.1 Lock-and-Key 

In the lock and key scheme, a lock is assigned to every 

memory allocation, and a key is assigned to a corresponding 

valid pointer. These lock and key pairs form the basis for 

verifying any potentially malicious attempts during pointer 

dereferencing for memory access. If the key provided by the 

pointer does not match the lock assigned to the memory, it is 

deemed invalid, leading to the generation of an exception. 

This mechanism ensures that only valid pointers with 

matching keys can access the corresponding memory regions, 

preventing unauthorized or malicious memory accesses. 

 

2.2.2 Pointer Nullification 

Pointer nullification is an intuitive method for mitigating the 

risks associated with dangling pointers. Use-After-Free 

(UAF) attacks occur when dangling pointers are 

dereferenced. However, by nullifying dangling pointers, any 

subsequent attempt to dereference them would result in a 

segmentation fault due to null pointer dereferencing, thereby 

preventing the exploitation of dangling pointers. 

 

2.3 Memory Tagging Extension (MTE) 

ARM introduced the Memory Tagging Extension (MTE) as 

part of the Armv8.5 architecture. MTE aims to improve the 

security by detecting and mitigating memory-related 

vulnerabilities. 

 

 

Figure 1. memory access mechanism of ARM memory 

tagging extension 

As shown in Figure 1, MTE supports two types of tags: 

pointer tags and memory tags. Pointer tags are assigned to 

56~59 bits of each pointer’s virtual address. Memory tags are 

assigned to each 16B (or 32B) memory block and stored 

separately. MTE uses an underlying lock and key mechanism 

to access memory. If memory tag(lock) and pointer tag(key) 

do not match, a memory access violation occurs and an error 

is raised. MTE adds special instructions (e.g., irg, stg, ldg, 

addg, etc.) to explicitly perform tag-related operations. 

Furthermore, the pointer tag is implicitly propagated through 

pointer arithmetic to other pointers which referencing the 

same object. 

MTE provides two operation modes: synchronous (SYNC) 

mode and asynchronous (ASYNC) mode. In SYNC mode, a 

mismatch between the tag in the pointer and the tag in 

memory causes a synchronous exception. SYNC mode 

prioritizes the accuracy of error detection and endures 

performance overhead. In ASYNC mode, the processor 

continues execution despite a tag mismatch. Opposed to 

SYNC mode, ASYNC mode is optimized for performance 

over the accuracy of error detection. A recent linux kernel 

[13] supports MTE by generating SIGSEGV. This procedure 

uses a code, SEGV_MTESERR (i.e., synchronous error) at 

the SYNC mode or SEGV_MTEAERR (i.e., asynchronous 

error) at the ASYNC mode. 

 

3. Threat Model 

We assume that a program running with our design has UAF 

vulnerabilities. The attacker can exploit those by leveraging 

dangling pointers. Other memory attacks, such as buffer 
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overflow and type confusion, are out of scope. So, our 

module is guaranteed not to be modified by attackers. 

 

4. Design 

We implemented a simple module that intercepts malloc and 

free from application and performs some tag-related 

operations. 

 

4.1 Overview 

 

Figure 2. Overall design 

Our overall design is depicted in Figure 2. Simple module is 

placed between the application and the memory allocator. 

When an application sends malloc or free request to the 

allocator, the module hooks the request and performs tag-

related operations for each request. For malloc, the module 

first invokes the real memory allocator’s malloc function. 

Then, the module assigns initial random tag to the returned 

pointer with irg instruction and sets the same tag number to 

its referent memory chunk with stg instruction. By doing so, 

the pointer and its referent memory chunk have the same 

random tag number. After setting the tag for the pointer and 

memory chunk, module returns the pointer to the application. 

For free call, similar to malloc call, the module intercepts the 

request. Then, the module increments the referent memory 

chunk by 1 and performs the real memory allocator’s free 

function sequentially. 

 

4.2 UAF prevention through MTE 

 

Figure 3. UAF prevention by tag matching. For memory 

allocation request, the random tag number is assigned. 

The tag number is incremented when freeing the object. 

As shown in Figure 3, our simple module utilizing MTE 

prevents UAF attack by tag matching. As discussed in 

Section 4.1, the module performs some tag-related operations 

for malloc and free request of the application. When the 

application calls malloc to request an object, the random tag 

number is assigned to both the returned pointer and its 

referent memory chunk. The tag of the memory chunk is 

incremented by 1 for free call. After free, if a dangling 

pointer tries to access the freed chunk, a tag mismatch occurs 

since the freed memory chunk’s tag incremented while the 

dangling pointer’s tag is unchanged. As a result, an exception 

is raised. 

 

5. Experiment 

The experiment was conducted on a Pixel 8 Android device 

that supports MTE. Our module was implemented on the 

device. Simple UAF attack that dereferences a dangling 

pointer after freeing was examined and performance 

measurements were conducted on the gcc and mcf 

benchmarks from SPEC2006. 

An exception was raised when we conducted the simple UAF 

attack. We observed that our module could prevent the 

possibility of dereferencing the dangling pointer after freeing 

by incrementing the tag number of the freed memory chunk. 

For gcc, there was approximately a -0.5% overhead, while 

for mcf, there was around a 3.9% overhead. Considering that 

the operation of the module is the insertion of one irg and stg 

instruction for malloc and one stg instruction for free call, the 

performance overhead attributed to this was not significant in 

the overall application performance and other factors could 

have influenced the results.  

 

Figure 4. Performance measurement on gcc and mcf 

benchmarks 
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6. Limitation 

Tagging a pointer with a random tag can introduce the 

possibility of a UAF attack. If an attacker’s randomly 

assigned pointer tag coincidentally matches the memory tag 

of a freed chunk containing secret data, the attacker could 

manipulate the pointing address of the pointer to point to the 

freed chunk containing the secret data. Consequently, the 

attacker could pass tag matching procedure and access the 

secret data. 

 

7. Conclusion 

We implemented a simplified version of the virtual address 

tagging scheme proposed in previous research on a real 

machine supporting MTE. We examined its effectiveness in 

preventing simple UAF attack and evaluated its performance 

on several benchmarks of SPEC2006. However, simply 

setting a random tag had some security pitfalls, and it was 

deemed necessary to have a more sophisticated tag setting 

and management system. Through this, research on a module 

capable of preventing complex UAF attacks should continue, 

as it remains crucial. 
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