
1. Introduction

With the rise in software complexity, there has

been a noticeable increase in memory bugs that

can lead to vulnerabilities that leak secret

information, posing significant challenges for

developers. As a result, researchers have led the

way in creating effective methods to find and

identify issues in software. Out of numerous

mechanisms that aim to defend against software

vulnerabilities, Fuzzing[1] stands out for its

efficiency and effectiveness in discovering

previously unfound vulnerabilities by generating a

massive number of random inputs to run a target

program in hopes of identifying certain input that

triggers memory bug - i.e., program crash thus

leading to various fuzzing research endeavors.

development of numerous fuzzers has branched

into several categories based on target being

fuzzed, such as the level of insight into the

program being tested - white,gray or black box

fuzzing or depending on how to generate and

mutate inputs - mutation,generation, coverage

based fuzzing, and having access to source code

versus relying on executable binaries.

Unfortunately, non-trivial development efforts for

both researchers and industry to make use of a

combination of existing fuzzers for practical

analysis or evaluate new tools. As AFL research

progressed and AFL gained prominence, many

fuzzers were developed based on AFL. However,

because these were developed out-of-tree, it

became difficult for both researchers and industry

to make use of a combination of existing fuzzers

for practical analysis or evaluate new tools. To

address these issues, AFL++[2], emerged as an

integrated framework for various fuzzers. AFL++

has introduced several improvements and new

features that significantly enhance its efficacy and

flexibility in software testing. These

advancements include advanced mutators,

optimized algorithms for faster execution, and

more effective code coverage techniques.

Moreover, AFL++ has extended its reach by

supporting a variety of programming languages

and platforms, broadening its applicability across

a diverse range of software testing scenarios

Regrettably, despite receiving considerable

attention for their performance, state-of-the-art

Integrating Directed-Based Fuzzing with AFL++
in QEMU Mode

Jin-myung Choi1, Hyunjun Kim1, Martin Kayondo1, Yun-heung Paek1
1Dept. of Electrical and Computer Engineering and Inter-University Semiconductor

Research Center(ISRC), 1Seoul National University
{jmchoi,hjkim}@sor.snu.ac.kr, ,martin@snu.ac.kr, ypaek@snu.ac.kr

QEMU 모드에서 AFL++와 Directed-Based
Fuzzing 의 통합

최진명1, 김현준1, 마틴1, 백윤흥1
1서울대학교　전기정보공학부，1서울대학교　반도체　공동연구소

Abstract
Fuzzing is widely used as a testing tool to identify vulnerabilities in software programs.
Although AFL++ has emerged to facilitate the integration and development of many fuzzers, there
are still numerous advance fuzzing technologies that have not yet been incorporated. Among
these, we have integrated state-of-the-art directed-based fuzzing techniques into AFL++ to
operate in QEMU mode.

ASK 2024 학술발표대회 논문집 (31권 1호)

- 271 -

mailto:jmchoi@sor.snu.ac.kr


fuzzers, particularly those based on directed

fuzzing such as AFLGO[3] and SelectFuzz[4],

have not been integrated into AFL++. In this

paper, we port and evaluate directed fuzzing

techniques to AFL++. This work is non-trivial

due to differing version of software stack (e.g.

QEMU) and introduction of various APIs to

manage and execute fuzzers. To that end, we

implement AFLGo’s and SelectFuzz’s directed

fuzzing algorithm that are source code based

techniques and adapt them to AFL++’s binary

fuzzer by modifying AFL++’s QEMU virtual

machine. We evaluate and test our ported version

of AFL++ on five programs with known bugs,

and compare our implementation with AFL++’s

coverage fuzzer as the control group. Our

experimental results confirm the correctness of

our implementation and the superiority of directed

fuzzing over coverage fuzzing as previously

reported in original AFLGo and SelectFuzz.

Therefore, our work enhances the versatility and

adaptability of AFL++, demonstrating its

effectiveness as a comprehensive platform for

deploying and evaluating advanced fuzzing

techniques.

2. Background

2.1 coverage based, directed based

Coverage-based fuzzing is a method where a tool

automatically generates inputs for a program to

maximize the coverage of the program's code. It

monitors which parts of the code are executed

with each input and prefers inputs that explore

new areas of the code. The aim is to find inputs

that cause the program to behave unexpectedly,

revealing potential bugs. Inputs that lead to

unexplored code paths are considered valuable and

are used to create more inputs.

Directed based fuzzing is a smart way to test

software by focusing on specific areas that might

have bugs, like recent changes or areas flagged

by other tools. Unlike traditional methods that

check the entire software, directed fuzzing zeroes

in on these key spots to find issues more quickly

and efficiently. It does this in three main steps:

setting up by figuring out how far each part of

the software is from the target area, the actual

fuzzing where it picks and tweaks tests to get

closer to the target, and finally, sorting through

the results to find potential problems. This

approach is especially good for analyzing complex

software to uncover new problems or reproduce

known issues, making it a powerful tool for

improving software safety.

2.2 AFL++

American Fuzzy Lop++(AFL++), a renowned

coverage-guided gray box fuzzer developed by

Zalewski, mutates a set of inputs to reach

previously unexplored path in the program. AFL’s

coverage guide evaluates input by monitoring how

many different paths through the software's code

are triggered and how frequently each path is

taken during a single test. This is done by

assigning each path a category based on the

number of times it's executed, using groups that

double in size (like 1, 2, 4, 8, etc.) to keep the

amount of information manageable. If an input

discovers a new category for a path, it's marked

as valuable and kept for further testing. This data

is recorded in a special table, with each section

corresponding to a path. However, there's a limit

to the table's size, which means some data might

get mixed up. To handle this, AFL++ uses a

smart method to select a core collection of tests

that best represent the software's behavior,

considering how fast and small these tests are.

When AFL++ has access to the source code, it

employs static instrumentation to append metadata

to basic blocks, thereby gathering the necessary

information for coverage fuzzing. In contrast,

when only the executable binary is available,

AFL++ resorts to dynamic instrumentation

through the use of a QEMU virtual machine. As

the binary is executed within QEMU, the

generated information is stored in shared memory,

allowing AFL++ to access and continuously run

tests. AFL++ places interesting inputs into the

execution queue and runs the program again with

slightly modified inputs through a mutator.

ASK 2024 학술발표대회 논문집 (31권 1호)

- 272 -



Whether an input is discarded or added to the

execution queue depends on how interesting it is.

Users can assign higher scores to inputs based

on criteria they consider important, ensuring those

inputs remain in the queue longer.

3. Design

In this section, we will explain overview and

detail of design.

Figure 1: Overview of Fuzzing

We have modified the technologies originally

based on source code, AFLGo and SelectFuzz, to

work in QEMU mode. We are preparing the

information needed to run them through dynamic

instrumentation

To implement directed fuzzing, it's essential to

acquire basic block addresses and distances

between basic block and target function. This is

achieved by employing analysis techniques such

as static analysis[5] and concolic execution[6].

The derived addresses and distance information

are stored in a file that is read by QEMU upon

startup. After startup, This data is then stored in

a one-dimensional array. The indexing for this

array is done similarly to how AFL++ calculates

hashes for bitmap management.

Following the initial setup, dynamic

instrumentation is performed via the QEMU

virtual machine. This process involves

instrumenting every basic block traversed for a

given input. During this phase, in addition to the

already captured coverage information, the system

is designed to record the distance of each basic

block to the target function. These distances are

computed and aggregated to form a cumulative

distance metric for each input. This aggregate

distance is then stored in shared memory, ready

for the fuzzer to access and utilize. The fuzzer

then accesses this shared memory to evaluate the

significance of the input based on the distance

information, assigning scores accordingly. These

scores determine whether an input is retained or

discarded, a decision-making process known as

power scheduling. The power scheduler employs

an annealing-based Power Schedules approach to

prioritize inputs that bring the execution closer to

the target function, ensuring they remain in the

execution queue.

4. Evaluation

Here are the experimental results comparing

AFL++, AFLGO++, and SelectFuzz++, all

implemented in qemu mode for afl++. The first

column shows the total

Table 1: Overview of out experiments

number of crashes and (in parentheses) the

number of unique crashes, while the second

column indicates how many vulnerability bugs we

aimed to find were triggered, with the time of the

first discovery noted in parentheses. Experiments

were halted after a maximum of 120 hours if no

vulnerabilities were found.

For CVE-2018-8807, while afl++ failed to find the

vulnerability even after 120 hours, both aflgo++

Name AFL++ AFLGO++ SelectFuzz++

CVE-2018-8807

(decompileCAL

LFUNCTION)

115k

(722)
0

52.3k

(610)

3

(8.3h)

5.9k

(441)

3

(63h)

mjs-issue-73

(mjs_mk_string)

1.6k

(61)
0

40k

(88)

9

(6.5m)

31k

(81)
0

CVE-2018-20427

(getInt)

16.6k

(440)

6

(21.9m)

134k

(690)

7

(51.1m)

137k

(723)

3

(2.27h)

CVE-2016-9827

(_iprintf)

12.5k

(259)
0

14.9k

(287)
0

8.6k

(203)
0

CVE-2017-7578

(parseSWF_RG

BA)

39.5k

(660)
0

48.1k

(674)
0

20.3k

(574)
0

ASK 2024 학술발표대회 논문집 (31권 1호)

- 273 -



and selectfuzz++ succeeded in discovering the

desired vulnerability. This indicates that although

afl++ is based on coverage-based fuzzing and

shows a higher total number of crashes,

directed-based fuzzing can also result in a high

number of crashes if the targeted parts of the

code are particularly vulnerable. Cases like

CVE-2018-20427, 2016-9827, and 2017-7578 target

functions related to decompiling, which involve

many allocate and deallocate functions, leading to

relatively more memory-related bug crashes.

Despite the high number of total crashes, these

were not effective in finding the targeted bugs

because the fuzzing process prioritizes the inputs

that caused crashes, making slight modifications

to them for retesting. In such scenarios,

directed-based fuzzing does not show good

results. Moreover, aflgobin++ demonstrates

superior performance over selectfuzz++ in terms

of finding the target bug and the speed of

discovery. This superiority is likely due to

selectfuzz's limitations in handling data flow

dependencies and indirect calls, which are

necessary for computing distance information,

particularly in QEMU mode.

5. Conclusion

While coverage-based fuzzing has been

extensively developed for finding vulnerabilities in

programs, if the binary to be tested already

includes functions known to be vulnerable, using

directed-based fuzzing is more efficient for

quickly identifying if these functions are

vulnerable. Therefore, it is significant that

state-of-the-art coverage-based fuzzing

techniques can be used in afl++, and that it can

operate in QEMU mode even without source code.

ACKNOWLEDGEMENT

This work was supported by the National

Research Foundation of Korea(NRF) grant funded

by the Korea government(MSIT)

(RS-2023-00277326), Institute of Information &

communications Technology Planning &

Evaluation(IITP) grant funded by the Korea

government(MSIT) (No.2020-0-01840,Analysis on

technique of accessing and acquiring user data in

smartphone), the BK21 FOUR program of the

Education and Research Program for Future ICT

Pioneers, Seoul National University in 2024,

Institute of Information & communications

Technology Planning & Evaluation (IITP) under

the artificial intelligence semiconductor support

program to nurture the best talents

(IITP-2023-RS-2023-00256081) grant funded by

the Korea government(MSIT), Inter-University

Semiconductor Research Center (ISRC)

Reference

[1] Manès, V. J., Han, H., Han, C., Cha, S. K.,

Egele, M., Schwartz, E. J., & Woo, M. (2019).

The art, science, and engineering of fuzzing: A

survey. IEEE Transactions on Software

Engineering, 47(11), 2312-2331.

[2] Fioraldi, A., Maier, D., Eißfeldt, H., & Heuse,

M. (2020). {AFL++}: Combining incremental steps

of fuzzing research. In 14th USENIX Workshop

on Offensive Technologies (WOOT 20)

[3] Böhme, M., Pham, V. T., Nguyen, M. D., &

Roychoudhury, A. (2017, October). Directed

greybox fuzzing. In Proceedings of the 2017 ACM

SIGSAC conference on computer and

communications security (pp. 2329-2344).

[4] Luo, C., Meng, W., & Li, P. (2023, May).

Selectfuzz: Efficient directed fuzzing with selective

path exploration. In 2023 IEEE Symposium on

Security and Privacy (SP) (pp. 2693-2707). IEEE.

[5] F. Dong, C. Dong, Y. Zhang, and T. Lin,

“Binary-oriented hybrid fuzz

testing,” in International Conference on Software

Engineering and Service Science, 2015.

[6] J. Peng, F. Li, B. Liu, L. Xu, B. Liu, K. Chen,

and W. Huo, “1dvul: Discovering 1-day

vulnerabilities through binary patches,” in

Proceedings of the 2019 International Conference

on Dependable Systems and Networks (DSN),

Portland, OR, USA, Jun. 2019.

ASK 2024 학술발표대회 논문집 (31권 1호)

- 274 -




