과제정보
이 성과는 2023년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2021R1A4A2001810). 본 과제(결과물)는 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역 혁신 사업의 결과입니다.(2021RIS-002, 1345370809)
참고문헌
- Korea Internet & Security Agency, "Ransomware Response Guidelines," https://www.kisa.or.kr/402/form?postSeq=2299, accessed on December 1, 2023.
- Korea Internet & Security Agency, "Ransomware Trend - Third quarter for 2023," https://seed.kisa.or.kr/kisa/Board/165/detailView.do, accessed on December 1, 2023.
- Y. Lee, H. Choi, D. Shin, and J. Lee, "Deep Learning based User Anomaly Detection Performance Evaluation to prevent Ransomware," Journal of Software Assessment and Valuation, Vol. 15, No. 2, pp. 43-50, Dec. 2019. https://doi.org/10.29056/jsav.2019.12.06
- K. Lee, J. Lee, S. Lee, and K. Yim, "Effective Ransomware Detection Using Entropy Estimation of Files for Cloud Services," Sensors, Vol. 23, No. 6, 3023, Mar. 2023.
- K. Kug, Y. Ryu, and S. Shin, "Implementation of reliable dynamic honeypot file creation system for ransomware attack detection," Journal of convergence security, Vol. 23, No. 2, pp. 27-36, Jun. 2023. https://doi.org/10.33778/kcsa.2023.23.2.027
- J. Lee and K. Lee, "A Method for Neutralizing Entropy Measurement-Based Ransomware Detection Technologies Using Encoding Algorithms," Entropy, Vol. 24, No. 2, 239, Feb. 2022.
- T. McIntosh, J. Jang-Jaccard, P. Watters, and T. Susnjak, "The Inadequacy of Entropy-Based Ransomware Detection," International Conference on Neural Information Processing, pp. 181-189, Dec. 2019.