Acknowledgement
본 연구는 순천향대학교 연구지원 사업 및 한국연구재단 4단계 두뇌한국 21 사업(4단계 BK21 사업)의 지원을 받아 작성되었음(과제번호: 5199990514663).
References
- P. Chen, S. Liu, X. Wang, and I. Kamwa, "Physics-Shielded Multi-Agent Deep Reinforcement Learning for Safe Active Voltage Control With Photovoltaic/Battery Energy Storage Systems," IEEE Trans. Smart Grid, vol. 14, no. 4, pp. 2656-2667, July 2023. https://doi.org/10.1109/TSG.2022.3228636
- "Diagnosis of Solar Power Generation Equipment Failures Without On-Site Visits," Donga Science, 2023. [Online]. Available: https://www.dongascience.com/news.php?idx=61712. [Accessed: 20-09-2023].
- K. Hu, S. Cao, L. Wang, W. Li, and M. Lv, "A new ultra-short-term photovoltaic power prediction model based on ground-based cloud images," J. Cleaner Prod., vol. 200, pp. 731-745, 2018. https://doi.org/10.1016/j.jclepro.2018.07.311
- S. Park, S. Jung, J. Moon, and E. Hwang, "Explainable Photovoltaic Power Forecasting Scheme Using BiLSTM," KIPS Trans. Softw. Data Eng., vol. 11, pp. 339-346, 2022.
- P. Li, K. Zhou, X. Lu, and S. Yang, "A hybrid deep learning model for short-term PV power forecasting," Appl. Energy, vol. 259, article no. 114216, 2020.
- S. Wang, D. Li, G. Liu, Z. Ling, and D. Wang, "Short-term PV Power Prediction Based on Bi-directional Gated Recurrent Unit Network and Adaptive Chirp Mode Decomposition," in Proc. 2023 3rd Int. Conf. Neural Networks, Information and Communication Engineering (NNICE), pp. 702-706, 2023.
- J. Liang and W. Tang, "Ultra-short-term spatiotemporal forecasting of renewable resources: An attention temporal convolutional network-based approach," IEEE Trans. Smart Grid, vol. 13, no. 5, pp. 3798-3812f, 2022.