하천 T-N 예측을 위한 머신러닝 적용 연구

A Study on the Application of Machine Learning for River T-N Prediction

  • 옥광민 (명지대학교 공과대학 토목환경공학과 ) ;
  • 남수한 (명지대학교 공과대학 토목환경공학과 ) ;
  • 김영도 (명지대학교 공과대학 토목환경공학과 )
  • 발행 : 2023.05.25

초록

일반적으로 하천의 수질은 산업화, 인구증가 등으로 인해 여러 종류의 오염물질이 유입되어 악화된다. 수질 악화의 대표적인 현상은 부영양화이며 이를 일으키는 주요 원인 물질은 통상 영양염류라고 말하는 질소와 인으로 알려져 있다. T-N이 다량 수계로 유입되면 식물성 플랑크톤 등이 대량 번식하여 녹조 현상등 수질 악화를 발생시켜 관리가 필요하다. 현재 많은 수자원 관리 부서에서 모니터링 포인트를 설정하여 수질 변화를 관찰하고 있다. 기존의 T-N 분석방법은 (1) 자외선 흡광광도법 (2) 카드뮴 환원법 (3) 환원증류-킬달법등이 있다. 그러나 이러한 방법들은 실험실 기반의 정량적 분석으로 시간과 비용이 크게 소요되어 발생하는 문제에 대해 초기대응을 하기 힘들다. 따라서 T-N을 효과적으로 측정할 수 있는 방법이 필요하다. 국내에서는 수질자료를 통한 연관된 수질 인자를 찾아내어 머신러닝 알고리즘을 활용해 Chl-a 농도를 추정한 연구사례가 있다. 국외에서는 TN과 센서 측정 지표 간의 물리적, 화학적 관계를 기반으로 센서 감지의 적시성과 지능형 알고리즘의 정확도를 결합하여 실시간 총질소(TN) 측정 방법 연구 사례가 있다. 따라서 본 연구에서는 머신러닝을 활용하여 국내에 적합한 T-N 예측 모델을 만들고자한다. 본 연구에서는 센서기반으로 측정가능한 수질항목들과 T-N의 상관성 분석을 통해 주요 수질인자를 도출하였다. 도출된 인자와 Python 기반의 머신러닝을 활용하여 T-N을 추정하였다. 그 후, T-N 추정값과 실측값을 비교하여 머신러닝 성능을 평가하고 실제 적용 가능성에 대해서 검증하였다. 본 연구는 기존 T-N 측정에 소모되는 시간과 비용의 감소에 기여하고 이를 통해 앞으로 더 정확한 수질 예측이 가능해질 것으로 기대된다.

키워드

과제정보

본 연구는 환경부 수생태계 건강성 확보 기술개발사업의 지원(2021003030005)에 의해 수행되었으며, 이와 같은 지원에 감사드립니다.