Acknowledgement
본 연구는 한국수자원공사(K-water)의 개방형 혁신 R&D 사업(21-AW-001)의 일환으로 수행되었습니다.
최근 태풍 및 집중호우로 인한 국내 홍수 피해 규모 및 빈도는 증가하고 있는 추세이며 이에 대한 대응과 수해 방지 대책 수립에 많은 어려움을 겪고 있다. 이와 같은 홍수 피해를 경감시키기 위해서는 유출 모의에 따른 유역 홍수 방어 대책 수립이 이루어져야 하나, 하천 상류 등과 같은 미계측유역이 존재하며 정확한 유출량 산정에 많은 어려움이 따른다. 통상, 미계측유역 유출량 산정은 비유량법, 지역회귀방법, 수문모형에 의한 모의 등이 있다. 그러나 기존의 통계적 방법은 기왕 자료간 관계의 선형성만을 고려한다는 한계가 있으며, 물리적 방법은 다양한 자료 활용에 대한 유연성이 낮다는 한계가 있다. 딥러닝 기반 방법은 자료 내 존재하는 비선형성과 입·출력간 인과관계를 반영하여 모의할 수 있다는 장점이 있다. 본 연구에서는 이러한 미계측유역 유출량 산정을 위해 국내 유역을 대상으로 딥러닝 모형에 대한 적용성을 평가하고자 한다. 알려진 미계측유역 유출량 산정 기법들과 물리적 요소를 고려한 개선된 딥러닝 구조를 활용한 기법에 대한 평가를 수행하였다. 미계측유역에 대한 첨두유출 모의 및 유출용적에 대한 평가를 수행하였으며, 홍수 유출이벤트에 대한 도시적 평가를 통해 딥러닝 기반 미계측유역 유출 모의 기법의 적용성을 평가하였다. 평가 결과, 물리적 요소를 고려한 딥러닝 기반 방법의 정확도가 상대적으로 높은 정확도를 보였으며 첨두 유출 모의를 잘 반영하는 것으로 나타났다. 향후, 유역의 다양한 특성을 활용하는 유출 모의 기법 개발 및 평가가 이루어져야 될 것으로 판단된다.
본 연구는 한국수자원공사(K-water)의 개방형 혁신 R&D 사업(21-AW-001)의 일환으로 수행되었습니다.