Advancing gross primary productivity estimation to super high-resolution through remote sensing and machine learning

원격탐사 및 머신러닝 기반 초고해상도 총일차생산량 산정

  • 성지미 (중앙대학교 공과대학 사회기반시스템공학부(건설환경플랜트공학 전공)) ;
  • 백종진 (중앙대학교 공과대학 사회기반시스템공학부) ;
  • 김현준 (중앙대학교 공과대학 사회기반시스템공학부) ;
  • 전창현 (중앙대학교 공과대학 사회환경시스템공학과)
  • Published : 2023.05.25

Abstract

총일차생산량(GPP, Gross Primary Productivity)은 생태계의 유기물 생산량을 나타내는 지표로써 생태계 생산성과 안정성을 파악할 수 있는 중요한 지표로 알려져 있다. GPP를 산출하는 대표적인 방법에는 다중 센서를 탑재한 원격 탐사 자료를 활용하는 방법과 플럭스타워를 통해 관측한 에디공분산을 분석하는 방법이 있다. 본 연구에서는 Landsat과 MODIS와 같이 시공간 해상도가 다른 원격 탐사 자료들을 기반으로 초고해상도 GPP 자료를 산출하기 위한 공간자료 융합 연구를 수행하였다. 이를 위해 GAN(Generative Adversarial Networks)과 같은 머신러닝 알고리즘을 활용하였으며 최종적으로 산정된 GPP 정보는 설마천과 청미천 등에 설치된 플럭스타워로부터 획득한 자료와의 비교·검증을 통해 평가되었다. 본 연구의 성과는 향후 증발산 자료, 생태계 호흡량 자료 등과의 조합을 통해 얻을 수 있는 물이용효율(WUE, Water Use Efficiency), 탄소이용효율(CUE, Carbon Uptake Efficiency)과 같은 지표 산정 시 적극 활용될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 습지생태계 가치평가 및 탄소흡수 가치증진 기술개발사업의 지원을 받아 연구되었습니다. (2022003640001)