DOI QR코드

DOI QR Code

태양 에너지 수집형 IoT 엣지 컴퓨팅 환경에서 효율적인 오디오 딥러닝을 위한 데이터 전처리 기법

Efficient Data Preprocessing Scheme for Audio Deep Learning in Solar-Powered IoT Edge Computing Environment

  • 유연태 (숭실대학교 지능시스템학과) ;
  • 이창한 (숭실대학교 AI융합학부) ;
  • 허석문 (숭실대학교 AI융합학부) ;
  • 유나경 (숭실대학교 AI융합학부) ;
  • 김기훈 (숭실대학교 AI융합학부) ;
  • 이찬서 (숭실대학교 AI융합학부) ;
  • 노동건 (숭실대학교 AI융합학부)
  • Yeon-Tae Yoo (Dept. of Intelligent Systems, Soongsil University) ;
  • Chang-Han Lee (School of AI Convergence, Soongsil University) ;
  • Seok-Mun Heo (School of AI Convergence, Soongsil University) ;
  • Na-Kyung You (School of AI Convergence, Soongsil University) ;
  • Ki-Hoon Kim (School of AI Convergence, Soongsil University) ;
  • Chan-Seo Lee (School of AI Convergence, Soongsil University) ;
  • Dong-Kun Noh (School of AI Convergence, Soongsil University)
  • 발행 : 2023.05.18

초록

태양 에너지 수집형 IoT 기기는 주기적으로 재충전되는 태양 에너지의 특성상, 에너지 소모를 최소화하기보다는 수집된 에너지를 최대한 유용하게 사용하는 것이 중요하다. 한편, 데이터 기밀성과 프라이버시, 응답속도, 비용 등의 이유로 클라우드가 아닌 데이터 소스 근처에서 머신러닝을 수행하는 엣지 AI에 대한 연구도 활발한데, 그 중 하나는 여러 IoT 장치들이 수집한 오디오 데이터를 활용하여, 다양한 AI 응용들을 IoT 엣지 컴퓨팅 환경에서 제공하는 것이다. 그러나, 이와 관련된 많은 연구에서, IoT 기기들은 에너지의 제약으로 인하여, 엣지 서버(IoT 서버)로의 센싱 데이터 전송만을 수행하고, 데이터 전처리를 포함한 모든 AI 과정은 엣지 서버에서 수행한다. 이 경우, 엣지 서버의 과부하 문제 뿐 아니라, 학습 및 추론에 불필요한 데이터까지도 서버에 그대로 전송되므로 네트워크 과부하 문제도 야기한다. 또한, 이를 해결하고자, 데이터 전처리 과정을 각 IoT 기기에 모두 맡긴다면, 기기의 에너지 부족으로 정전시간이 증가하는 또 다른 문제가 발생한다. 본 논문에서는 각 IoT 기기의 에너지 상태에 따라 데이터 전처리 여부를 결정함으로써, 기기들의 정전시간 증가 문제를 완화시키면서 서버 집중형 엣지 AI 환경의 문제들(엣지 서버 및 네트워크 과부하)을 완화시키고자 한다. 제안기법에서 IoT 장치는 기기가 기본적으로 동작하는 데 필요한 에너지 외의 여분의 에너지 양을 예측하고, 이 여분의 에너지가 있는 경우에만 이를 사용하여 기기에서 전처리 과정, 즉 수집 대상 소리 판별과 잡음 제거 과정을 거친 후 서버에 전송함으로써, IoT기기의 정전시간에 영향을 주지 않으면서, 에너지 적응적으로 데이터 전처리 위치(IoT기기 또는 엣지 서버)를 결정하여 수행한다.

키워드

과제정보

본 연구는 과학기술정보통신부 및 정보통신기획평가원의 SW중심대학사업의 연구결과로 수행되었음(2018-0-00209)