Wanda Pruning for Lightweighting Korean Language Model

Wanda Pruning에 기반한 한국어 언어 모델 경량화

  • Published : 2023.10.12

Abstract

최근에 등장한 대규모 언어 모델은 다양한 언어 처리 작업에서 놀라운 성능을 발휘하고 있다. 그러나 이러한 모델의 크기와 복잡성 때문에 모델 경량화의 필요성이 대두되고 있다. Pruning은 이러한 경량화 전략 중 하나로, 모델의 가중치나 연결의 일부를 제거하여 크기를 줄이면서도 동시에 성능을 최적화하는 방법을 제시한다. 본 논문에서는 한국어 언어 모델인 Polyglot-Ko에 Wanda[1] 기법을 적용하여 Pruning 작업을 수행하였다. 그리고 이를 통해 가중치가 제거된 모델의 Perplexity, Zero-shot 성능, 그리고 Fine-tuning 후의 성능을 분석하였다. 실험 결과, Wanda-50%, 4:8 Sparsity 패턴, 2:4 Sparsity 패턴의 순서로 높은 성능을 나타냈으며, 특히 일부 조건에서는 기존의 Dense 모델보다 더 뛰어난 성능을 보였다. 이러한 결과는 오늘날 대규모 언어 모델 중심의 연구에서 Pruning 기법의 효과와 그 중요성을 재확인하는 계기가 되었다.

Keywords