Novel Intent Discovery Utilizing Large Language Models and Active Learning Strategies

대규모 언어 모델을 활용한 새로운 의도 발견 방법과 액티브 러닝 전략

  • Published : 2023.10.12

Abstract

음성 어시스턴트 시스템에서 발화의 의도를 분류하고 새로운 의도를 탐지하는 것은 매우 중요한 작업이다. 끊임없이 인입되는 새로운 발화로 인해 기존에 학습된 모델의 의도 분류 성능은 시간이 지남에 따라 점차 낮아진다. 기존 연구들에서 새로운 의도 발견을 위해 제안되었던 클러스터링 방법은 최적의 클러스터 수 결정과 명명에 어려움이 있다. 이러한 제한 사항을 보완하기 위해, 본 연구에서는 대규모 언어 모델 기반의 효과적인 의도 발견 방법을 제안한다. 이 방법은 기존 의도 분류기로 판단하기 어려운 발화에 새로운 의도 레이블을 할당하는 방법이다. 새롭게 인입되는 OOD(Out-of-Domain) 발화 내에서 오분류를 찾아 기존에 정의된 의도를 탐지하고, 새로운 의도를 발견하는 효율적인 프롬프팅 방법도 분석한다. 이를 액티브 러닝 전략과 결합할 경우, 분류 가능한 의도의 개수를 지속 증가시면서도 모델의 성능 하락을 방지할 수 있고, 동시에 새로운 의도 발견을 자동화 할 수 있다.

Keywords