Knowledge Transfer in Multilingual LLMs Based on Code-Switching Corpora

코드 스위칭 코퍼스 기반 다국어 LLM의 지식 전이 연구

  • Published : 2023.10.12

Abstract

최근 등장한 Large Language Models (LLM)은 자연어 처리 분야에서 눈에 띄는 성과를 보여주었지만, 주로 영어 중심의 연구로 진행되어 그 한계를 가지고 있다. 본 연구는 사전 학습된 LLM의 언어별 지식 전이 가능성을 한국어를 중심으로 탐구하였다. 이를 위해 한국어와 영어로 구성된 코드 스위칭 코퍼스를 구축하였으며, 기본 모델인 LLAMA-2와 코드 스위칭 코퍼스를 추가 학습한 모델 간의 성능 비교를 수행하였다. 결과적으로, 제안하는 방법론으로 학습한 모델은 두 언어 간의 희미론적 정보가 효과적으로 전이됐으며, 두 언어 간의 지식 정보 연계가 가능했다. 이 연구는 다양한 언어와 문화를 반영하는 다국어 LLM 연구와, 소수 언어를 포함한 AI 기술의 확산 및 민주화에 기여할 수 있을 것으로 기대된다.

Keywords