Acknowledgement
This research was supported by "National Institute of Agricultural Sciences" (Project No. PJ015713), Rural Development Administration, Republic of Korea
Codonopsis lanceolata (C. lanceolata) has been widely used in East Asia as a traditional medicine to treat various diseases such as bronchitis, convulsions, cough, obesity, and hepatitis. C. lanceolata belonging to Campanulaceae contains bioactive compounds such as polyphenols, saponins, and steroids. However, despite the pharmacological significance of C. lanceolata, the genetic information of this plant is limited and there are few studies of its transcriptome. In this study, we constructed a unigene set of C. lanceolata using Pac-Bio sequencing. Furthermore, the reads generated from Pac-bio and Illumina sequencing were mixed and assembled using rnaSPAdes. All genes involved in the triterpenoid pathway, a major bioactive compounds of C. lanceolata, were searched from the two unigene sets and the expression profiles of these genes were analyzed. The results showed that lupeol, beta-amyrin, and dammarenediol synthesis genes were activated in the leaves and roots of C. lanceolata. In particular, the expression of genes related to lupeol synthesis was relatively high, suggesting that the main triterpenoid of C. lanceolata is lupeol. Transcriptome studies related to lupeol synthesis in C. lanceolata have been rarely reported. Lupeol has been reported to have pharmacological effects such as anti-inflammatory, anti-cancer, and anti-bacterial. This study suggests the importance of C. lanceolata as a lupeol producing plant.
This research was supported by "National Institute of Agricultural Sciences" (Project No. PJ015713), Rural Development Administration, Republic of Korea