대조 학습 기반 초해상도 모델 경량화 기법

Compression of Super-Resolution model Using Contrastive Learning

  • 발행 : 2022.06.20

초록

최근 딥러닝의 발전에 따라 단일 이미지 초해상도 분야에 좋은 성과를 보여주고 있다. 그러나 보다 더 높은 성능을 획득하기 위해 네트워크의 깊이 및 파라미터의 수가 크게 증가하였고, 모바일 및 엣지 디바이스에 원활하게 적용되기 위하여 딥러닝 모델 경량화의 필요성이 대두되고 있다. 이에 본 논문에서는 초해상도 모델 중 하나인 EDSR(Enhanced Deep Residual Network)에 대조 학습 기반 지식 전이를 적용한 경량화 기법을 제안한다. 실험 결과 제안한 지식 전이 기법이 기존의 다른 지식 증류 기법보다 향상된 성능을 보임을 확인하였다.

키워드

과제정보

본 논문은 2022 년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No.2021-0-00802, 속성을 유지하는 지능적 미디어 화면비 변환 기술개발, 100%)